<span>After alcohol is metabolized in the liver, it is burned as fuel for the cells. </span>
Answer:
Ans: 2
Explanation:
The concentration of reactants and the concentration of products are constant.
The options for given question are as follow,
1) Methane molecules show hydrogen bonding.
<span>2) Ammonia molecules show hydrogen bonding. </span>
<span>3) Methane has stronger hydrogen bonding than ammonia. </span>
<span>4) Both the compounds do not show hydrogen bonding. </span>
<span>5) Both the compounds have strong hydrogen bonding.
</span>
Answer:
Correct answer is Option-2 (Ammonia molecules show hydrogen bonding).
Explanation:
Hydrogen bond interactions are formed when a partial positive hydrogen atom attached to most electronegative atom of one molecule interacts with the partial negative most electronegative element of another molecule. So, in Ammonia hydrogen gets partial positive charge as nitrogen is highly electronegative. While the C-H bond in Methane is non-polar and fails to form hydrogen bond interactions.
<u>Answer:</u> The chemical equation is written below.
<u>Explanation:</u>
Every balanced chemical equation follows law of conservation of mass.
This law states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form. This also means that total number of individual atoms on reactant side must be equal to the total number of individual atoms on the product side.
The chemical equation for the reaction of elemental boron and oxygen gas follows:

By Stoichiometry of the reaction:
4 moles of elemental boron reacts with 3 moles of oxygen gas to produce 2 moles of diboron trioxide.
The chemical equation for the reaction of diboron trioxide and water follows:

By Stoichiometry of the reaction:
1 mole of diboron trixoide reacts with 3 moles of water to produce 2 moles of boric acid.
Hence, the chemical equations are written above.
Answer:
<h2>The answer is 334 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of ethanol = 423 cm³
density = 0.789 g/cm³
So we have
mass = 0.789 × 423 = 333.747
We have the final answer as
<h3>334 g</h3>
Hope this helps you