Answer:
0.16g
Explanation:
Please mark as brainliest
One of the many awe-inspiring things about algae, Professor Greene explains, is that they can grow between ten and 100 times faster than land plants. In view of this speedy growth rate – combined with the fact they can thrive virtually anywhere in the right conditions – growing marine microalgae could provide a variety of solutions to some of the world’s most pressing problems.
Take, global warming. Algae sequesters CO2, as we have learned, but owing to the fact they grow faster than land plants, can cover wider areas and can be utilised in bioreactors, they can actually absorb CO2 more effectively than land plants. AI company Hypergiant Industries, for instance, say their algae bioreactor was 400 times more efficient at taking in CO2 than trees.
And it’s not just their nutritional credentials which could solve humanity’s looming food crisis, but how they are produced. Marine microalgae grow in seawater, which means they do not rely on arable land or freshwater, both of which are in limited supply. Professor Greene believes the use of these organisms could therefore release almost three million km2 of cropland for reforestation, and also conserve one fifth of global freshwater
There are 1000 grams in a kg.
To convert g to kg, dovide by 1000.
3.5/1000= 0.0035 kg
Final answer: D
7 moles of oxygen are in the sample.
According to the chemical formula, each mole of nickel tetracarbonyl contains 4 moles of C atoms. Simply convert it into a fraction by putting the original solution in the denominator and the diluted solution in the numerator if you need to determine the concentration ratio between two solutions. The V/n ratio for each gas must be the same if the two gases are at the same temperature and pressure. The volume ratio of two gases at the same temperature and pressure is equal to their molar ratio. The mole ratio of C to O is 1 : 1
Learn more about moles here brainly.com/question/10873665
#SPJ1.
Answer : Linear
Explanation : Hydrogen Cyanide (HCN) when drwan in the Lewis diagram shows carbon atom at the center with no lone electron pairs.
The carbon and nitrogen atoms are bonded through a triple bond which counts as "one electron pair".
The molecule has two electron pairs in all and appears to be linear.
Also, according to the VSEPR theory; the electron clouds on atoms around the carbon will try to repel each other.
They will get pushed apart, which gives HCN molecule a linear molecular geometry or shape.
The bond angle that is developed will be 180 degrees since it has a linear molecular geometry of HCN. The hybridisation observed in this molecule is SP.