<h3>
Answer: ds/dt = 11</h3>
================================================
Work Shown:
Before we can use derivatives, we need to find the value of s when (x,y) = (15,20)
s^2 = x^2+y^2
s^2 = 15^2+20^2
s^2 = 225+400
s^2 = 625
s = sqrt(625)
s = 25
-----------
Now we can apply the derivative to both sides to get the following. Don't forget to use the chain rule.
s^2 = x^2 + y^2
d/dt[s^2] = d/dt[x^2 + y^2]
d/dt[s^2] = d/dt[x^2] + d/dt[y^2]
2s*ds/dt = 2x*dx/dt + 2y*dy/dt
2(25)*ds/dt = 2(15)*5 + 2(20)*(10)
50*ds/dt = 150 + 400
50*ds/dt = 550
ds/dt = 550/50
ds/dt = 11
-----------
Side note: The information t = 40 is never used. It's just extra info.
Answer:
(15°, 165°)
Step-by-step explanation:
Given the equation 6 sin2(x) = 3, we are to find the value of x that satisfies the equation in the interval [0, 2π]
Given
6 sin2(x) = 3,
Divide both sides by 6
6 sin2(x)/6 = 3/6
sin2(x) = 1/2
2x = sin^-1(0.5)
2x = 30°
x = 30°/2
x = 15°
Since sin is positive in the second quadrant, x2 = 180-15
x = 165°
Hence the values within the interval are 15 and 165.
(15°, 165°)
Answer: A
Step-by-step explanation:
Answer:
The answer is below
Step-by-step explanation:
a) Triangle A is attached in the image below.
The base of triangle A is 3 units and its height is 3 units. The area of a triangle is given as:
Area = (1/2) × base × height
Area of triangle A = (1/2) × base × height = (1/2) × 3 × 3 = 4.5 unit²
Area of the scaled copy = 72 unit²
Ratio of area = Area of the scaled copy / Area of triangle A = 72 unit² / 4.5 unit² = 16
Hence the scaled copy area is 16 times larger than that of triangle A.
b) For the scaled copy:
Area of the scaled copy = (1/2) × base × height = 72 unit²
base × height = 144
Since the base and height are equal
base² = 144
base = 12, also height = 12
Base of scaled copy = 12 = 4 × base of triangle A
Therefore the scale factor used is 4