Answer:
possible values of 4th term is 80 & - 80
Step-by-step explanation:
The general term of a geometric series is given by
![a(n)=ar^{n-1}](https://tex.z-dn.net/?f=a%28n%29%3Dar%5E%7Bn-1%7D)
Where a(n) is the nth term, r is the common ratio (a term divided by the term before it) and n is the number of term
- Given, 5th term is 40, we can write:
![ar^{5-1}=40\\ar^4=40](https://tex.z-dn.net/?f=ar%5E%7B5-1%7D%3D40%5C%5Car%5E4%3D40)
- Given, 7th term is 10, we can write:
![ar^{7-1}=10\\ar^6=10](https://tex.z-dn.net/?f=ar%5E%7B7-1%7D%3D10%5C%5Car%5E6%3D10)
We can solve for a in the first equation as:
![ar^4=40\\a=\frac{40}{r^4}](https://tex.z-dn.net/?f=ar%5E4%3D40%5C%5Ca%3D%5Cfrac%7B40%7D%7Br%5E4%7D)
<em>Now we can plug this into a of the 2nd equation:</em>
<em>
</em>
<em />
<em>Let's solve for a:</em>
<em>
</em>
<em />
Now, using the general formula of a term, we know that 4th term is:
4th term = ar^3
<u>Plugging in a = 640 and r = 1/2 and -1/2 respectively, we get 2 possible values of 4th term as:</u>
![ar^3\\1.(640)(\frac{1}{2})^3=80\\2.(640)(-\frac{1}{2})^3=-80](https://tex.z-dn.net/?f=ar%5E3%5C%5C1.%28640%29%28%5Cfrac%7B1%7D%7B2%7D%29%5E3%3D80%5C%5C2.%28640%29%28-%5Cfrac%7B1%7D%7B2%7D%29%5E3%3D-80)
possible values of 4th term is 80 & - 80
Its 230p-110=650p-400-p if not then i don't really know but that's what i got
Step-by-step explanation:
Consider LHS
![\cos(x) + \sin(x) \tan(x) = \sec(x)](https://tex.z-dn.net/?f=%20%5Ccos%28x%29%20%20%2B%20%20%5Csin%28x%29%20%20%5Ctan%28x%29%20%20%3D%20%20%5Csec%28x%29%20)
Apply quotient identies
![\cos(x) + \sin(x) \times \frac{ \sin(x) }{ \cos(x) } = \sec(x)](https://tex.z-dn.net/?f=%20%5Ccos%28x%29%20%20%2B%20%20%20%5Csin%28x%29%20%5Ctimes%20%20%5Cfrac%7B%20%5Csin%28x%29%20%7D%7B%20%5Ccos%28x%29%20%7D%20%20%3D%20%20%5Csec%28x%29%20)
Multiply the fraction and sine.
![\cos(x) + \frac{ \sin {}^{2} (x) }{ \cos(x) } = \sec(x)](https://tex.z-dn.net/?f=%20%5Ccos%28x%29%20%20%2B%20%20%5Cfrac%7B%20%5Csin%20%7B%7D%5E%7B2%7D%20%28x%29%20%7D%7B%20%5Ccos%28x%29%20%7D%20%20%3D%20%20%5Csec%28x%29%20)
Make cos x a fraction with cos x as it denominator.
![\cos(x) \times \cos(x) = \cos {}^{2} (x)](https://tex.z-dn.net/?f=%20%5Ccos%28x%29%20%20%5Ctimes%20%20%5Ccos%28x%29%20%20%3D%20%20%5Ccos%20%7B%7D%5E%7B2%7D%20%28x%29%20)
so
![\frac{ \cos {}^{2} (x) }{ \cos(x) } + \frac{ \sin {}^{2} (x) }{ \cos(x) } = \sec(x)](https://tex.z-dn.net/?f=%20%5Cfrac%7B%20%5Ccos%20%7B%7D%5E%7B2%7D%20%28x%29%20%7D%7B%20%5Ccos%28x%29%20%7D%20%20%2B%20%20%5Cfrac%7B%20%5Csin%20%7B%7D%5E%7B2%7D%20%28x%29%20%7D%7B%20%5Ccos%28x%29%20%7D%20%20%3D%20%20%5Csec%28x%29%20)
Pythagorean Identity tells us sin squared and cos squared equals 1 so
![\frac{1}{ \cos(x) } = \sec(x)](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%20%5Ccos%28x%29%20%7D%20%20%3D%20%20%5Csec%28x%29%20)
Apply reciprocal identity.
![\sec(x) = \sec(x)](https://tex.z-dn.net/?f=%20%5Csec%28x%29%20%20%3D%20%20%5Csec%28x%29%20)
Answer: there are 25 red flowers in Sakura's garden.
Step-by-step explanation:
In Sakura's garden, for every 5 red flowers, there are 10 yellow flowers. This means that if there are 10 red flowers, there would be 20 yellow flowers. if there are 20 red flowers, there would be 40 yellow flowers. Therefore, the ratio of red flowers to yellow flowers in the garden is
5/10 = 10/20 £= 20/40 = 1/2 = 1:2
Total ratio = 2 + 1 = 3
If there are 75 total red and yellow flowers, then the total number of red flowers are in Sakura's garden would be
1/3 × 75 = 25
Answer:
Your answer is (D)-7
Step-by-step explanation: