Answer:
See explanation
Explanation:
We have to start, remembering the mechanism behind the <u>McLafferty rearrangement</u>. The hydrogen in the g<u>amma carbon</u> (in this case, carbon 5) would be removed by a <u>heterolytic rupture</u> due to the <u>cation-radical</u> placed in the oxygen of the <u>carbonyl group</u>. Then we will have several heterolytic ruptures. Between <u>carbons alpha and beta</u> (in this case, 4 and 3) and a rupture in the <u>carbonyl group</u>. Due to these ruptures, <u>two double bonds would be formed</u>. One double bond in the alcohol cation-radical and the other one in the alkene.
See figure 1
I hope it helps!
Answer:
Both reactions share a common intermediate and differ only in the leaving group
Explanation:
The elimination reaction of tertiary alkyl halides usually occur by E1 mechanism. In E1 mechanism, the substrate undergoes ionization leading to the loss of a leaving group and formation of a carbocation.
Loss of a proton from the carbocation completes the reaction mechanism yielding the desired alkene.
In the cases of t-butanol and t-butyl bromide, the mechanism is the same. The both reactions proceed by E1 mechanism. The leaving groups in each case are water and chloride ion respectively.
M = 4.79 kg = 4790 g
d = 7.86 g/cm3
density = mass/volume
v = m/d
v = 4790/7.86
v = 609.4 cm3
1 cm3 = 10^-2 dL
v = 609.4 x 0.01 = 6.09 dL
Answer:
The equation: (NH₄)₂SO₄ = 2NH4(+) + SO4(-2)
The number of moles = 5 g / 132.14 g/mol = 0.038 mol
The number of molecules = 0.038 X 6.022x10^23 = 2.29x10^23
the number of positive ions present in the ammonium sulphate solution:
2 positive ions for every 1 molecule of (NH₄)₂SO₄
so 2 x 2.29x10^23 = 4.58x10^23
the number of negative ions present in the ammonium sulphate solution
1 negative ion for every 1 molecule of (NH₄)₂SO₄
so 1 x 2.29x10^23 = 2.29x10^23
the total number of ions present in the ammonium sulphate solution
4.58x10^23 + 2.29x10^23 = 6.87x10^23
The answer is B. the occurrence of huge events in Earth's natural history
The geologic time scale is a system of chronological dating that relates geological strata to time. It is used by geologists, paleontologists, and other Earth scientists to describe the timing and relationships of events that have occurred during Earth's history.