Missing question: "What is the spring's constant?"
Solution:
The object of mass m=6.89 kg exerts a force on the spring equal to its weight:

When the object is attached to the spring, the displacement of the spring with respect to its equilibrium position is

And by using Hook's law, we can find the constant of the spring:
It has a 10 electrons. Since it's atomic number is 11 it must have 11 protons. Also, given that it has a +1 charge, it has one less electron than protons since they have equal but opposite charges.
The number of protons is the mass number minus the atomic number = 23-11= 12 neutrons.
Height and depth..... for sure....
Answer:
How fast and efficient the energy is released.
Explanation:
Before burning the marshmallow energy is stored in it in the form of chemical bond energy or chemical potential energy. So upon burning this energy is released. So there will be a difference in energy release from a burned marshmallow and the one we eat straight from package.
Answer:
D. Friction and air resistance created heat on his trip up the hill.
Explanation:
Energy transformation from one form to another is not 100% efficient. This is the postulate of the first law of thermodynamics.
Most of the energy transformation is not purely 100%.
When energy is transformed, some are usually wasted.
- In this case, in moving from bottom up, Superman produced some heat and encountered air resistance.
- To reach the top, he must have overcome the resistance and produce enough heat to power him through.
- This reduces the amount of potential energy that should have been the same as the kinetic energy down below.