Answer:
4.14°
Explanation:
given:
r = 1.2 km
v = 105 km/h
1) <em>convert your given </em>
a) r = 1.2 km to m = 1200m
b) v = 105 km/h to m/s = 29.2 m/s
2) <em>plug into your ideal banking angle equation</em>
(
) =
= 4.14°
Answer:
Initial position of a body is the position of the body before accelerating or increasing its velocity the position changes and then that position is the final position.
hope it is helpful...
Answer:
The resultant velocity of the plane relative to the ground is;
150 kh/h north
Explanation:
The flight speed of the plane = 210 km/h
The direction of flight of the plane = North
The speed at which the wind is blowing = 60 km/h
The direction of the wind = South
Therefore, representing the speed of the plane and the wind in vector format, we have;
The velocity vector of the plane = 210.
The velocity vector of the wind = -60.
Where, North is taken as the positive y or
direction
The resultant velocity vector is found by summation of the two vectors as follows;
Resultant velocity vector = The velocity vector of the plane + The velocity vector of the wind
Resultant velocity vector = 210.
+ (-60.
) = 210.
- 60.
= 150.
The resultant velocity vector = 150.
Therefore, the resultant velocity of the plane relative to the ground = 150 kh/h north.
The kinetic energy for a large vehicle is different from that of a smaller vehicle, assuming that the vehicles are travelling at the same speed and stopping the same distance. This is because for a larger vehicle the kinetic energy is higher, as the mass for a larger vehicle, is more than the smaller vehicle.
Answer:
I'm pretty sure it's 49 but then again I don't know