The universe is made up of baryonic matter.(neutrons,electrons,protons)
<h3>
Answer:</h3>
225 meters
<h3>
Explanation:</h3>
Acceleration is the rate of change in velocity of an object in motion.
In our case we are given;
Acceleration, a = 2.0 m/s²
Time, t = 15 s
We are required to find the length of the slope;
Assuming the student started at rest, then the initial velocity, V₀ is Zero.
<h3>Step 1: Calculate the final velocity, Vf</h3>
Using the equation of linear motion;
Vf = V₀ + at
Therefore;
Vf = 0 + (2 × 15)
= 30 m/s
Thus, the final velocity of the student is 30 m/s
<h3>Step 2: Calculate the length (displacement) of the slope </h3>
Using the other equation of linear motion;
S = 0.5 at + V₀t
We can calculate the length, S of the slope
That is;
S = (0.5 × 2 × 15² ) - (0 × 15)
= 225 m
Therefore, the length of the slope is 225 m
Every atom has electrons. When you add new electrons to the wire, they will be passed on to an atom. The electrons keep passing from atom to atom until it reaches the light source, basically. It's kinda like that one song "100 jugs of milk" or whatever it's called. Each atom passes the atom next to it an electron.
Answer:
<em>The velocity of the carts after the event is 1 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
The total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
In a system of two masses, the equation simplifies to:

If both masses stick together after the collision at a common speed v', then:

The common velocity after this situation is:

The m1=2 kg cart is moving to the right at v1=5 m/s. It collides with an m2= 8 kg cart at rest (v2=0). Knowing they stick together after the collision, the common speed is:

The velocity of the carts after the event is 1 m/s