Answer:
30 mL VOLUME OF 3.0 M HCl SHOULD BE USED BY THE STUDENT TO MAKE A 1.80 M IN 50 mL OF HCl.
Explanation:
M1 = 3.00 M
M2 = 1.80 M
V2 = 50 .0 mL = 50 /1000 L = 0.05 L
V1 = unknown
In solving this question, we know that number of moles of a solution is equal to the molar concentration multiplied by the volume. To compare two samples, we equate both number of moles and substitute for the required component.
So we use the equation:
M1 V1 = M2 V2
V1 = M2 V2 / M1
V2 = 1.80 * 0.05 / 3.0
V2 = 0.09 /3.0
V2 = 0.03 L or 30 mL
To prepare the sample of 1.80 M HCl in 50.0 mL from a 3.0 M HCl, 30 mL volume should be used.
<span>Cytoplasm is the substance between the cell membrane and the nucleus which primarily consists of water and holds organelles.</span><span>
</span>
Explanation:
At sea level, the atmospheric pressure would be a little over 100 kPa (one atmosphere or 760 mm Hg). If we climb to the top of Mount Everest (the highest mountain in the world at 29,029 feet or 8848 meters), the atmospheric pressure will drop to slightly over 30 kPa (about 0.30 atmospheres or 228 mm Hg).
Hope it is helpful for you
The correct answer for the question that is being presented above is this one: "Electrovalency is characterized with the transferring of one or more electrons from one atom to another together with the formation of ions and as well as the number of positive and negative charges.
The Lewis and Langmuir theory of electrovalency (and as well as Kossel's) is dealing with Ionic bonds.
Lewis: electron-pair sharing, octet rule, Lewis Symbols or StructureLangmuir: introduced term "covalent" bond, and popularized Lewis's ideas
<span>The Lewis-Langmuir electron-pair or covalent bond is referred as the homopolar bond, where the complete transfer of electrons give rise to ionic, or electrovalent bond (1) through attraction of opposite charges.</span>
Syrup, molasses, and honey have a lower viscosity than water