Solution :
Energy of photon, E = 6.7 eV
E =
joule
Kinetic energy, ![$K.E. =\frac{1}{2} mv^2 = 1.602 \times 6.7 \times 10^{-7}$](https://tex.z-dn.net/?f=%24K.E.%20%3D%5Cfrac%7B1%7D%7B2%7D%20mv%5E2%20%3D%201.602%20%5Ctimes%206.7%20%5Ctimes%2010%5E%7B-7%7D%24)
![$v^2=\frac{2 \times 1.602 \times 6.7 \times 10^{-7}}{1.6726 \times 10^{-27}}$](https://tex.z-dn.net/?f=%24v%5E2%3D%5Cfrac%7B2%20%5Ctimes%201.602%20%5Ctimes%206.7%20%5Ctimes%2010%5E%7B-7%7D%7D%7B1.6726%20%5Ctimes%2010%5E%7B-27%7D%7D%24)
![$=12.834 \times 10^{-20}$](https://tex.z-dn.net/?f=%24%3D12.834%20%5Ctimes%2010%5E%7B-20%7D%24)
Kinetic energy at high speeds
![$(r-1)\times mc^2 = 6.7 \ eV$](https://tex.z-dn.net/?f=%24%28r-1%29%5Ctimes%20mc%5E2%20%3D%206.7%20%5C%20eV%24)
![$(r-1)=\frac{6.7 \times 1.602 \times 10^{-7}}{1.6726 \times 10^{-27} \times 9 \times 10^{16}}$](https://tex.z-dn.net/?f=%24%28r-1%29%3D%5Cfrac%7B6.7%20%5Ctimes%201.602%20%5Ctimes%2010%5E%7B-7%7D%7D%7B1.6726%20%5Ctimes%2010%5E%7B-27%7D%20%5Ctimes%209%20%5Ctimes%2010%5E%7B16%7D%7D%24)
r - 1 = 7130
r = 7130 + 1
r = 7131
![$\frac{1}{\sqrt{1-\frac{v^2}{C^2}}}=7131$](https://tex.z-dn.net/?f=%24%5Cfrac%7B1%7D%7B%5Csqrt%7B1-%5Cfrac%7Bv%5E2%7D%7BC%5E2%7D%7D%7D%3D7131%24)
![$1-\frac{v^2}{C^2} = \left(\frac{1}{7131}\right)^2$](https://tex.z-dn.net/?f=%241-%5Cfrac%7Bv%5E2%7D%7BC%5E2%7D%20%3D%20%5Cleft%28%5Cfrac%7B1%7D%7B7131%7D%5Cright%29%5E2%24)
![$v^2=C^2\left[1-\left(\frac{1}{7131}\right)^2\right]$](https://tex.z-dn.net/?f=%24v%5E2%3DC%5E2%5Cleft%5B1-%5Cleft%28%5Cfrac%7B1%7D%7B7131%7D%5Cright%29%5E2%5Cright%5D%24)
![$v=0.99999999017C$](https://tex.z-dn.net/?f=%24v%3D0.99999999017C%24)
Δ = 1 - 0.99999999017
= 0.00000000933
Relative mass, ![$m_{rel}=r.m$](https://tex.z-dn.net/?f=%24m_%7Brel%7D%3Dr.m%24)
![$=7131 \times 1.6728 \times 10^{-27}$](https://tex.z-dn.net/?f=%24%3D7131%20%5Ctimes%201.6728%20%5Ctimes%2010%5E%7B-27%7D%24)
kg
By definition, speed is the integral of acceleration with respect to time.
We have then:
![v = \int\limits^t_0 {a} \, dt](https://tex.z-dn.net/?f=%20v%20%3D%20%5Cint%5Climits%5Et_0%20%7Ba%7D%20%5C%2C%20dt%20%20)
As the acceleration is constant, then integrating we have:
![v = a*t + vo](https://tex.z-dn.net/?f=%20v%20%3D%20a%2At%20%2B%20vo%20)
Where,
vo: constant of integration that corresponds to the initial velocity
We observe then that the speed varies linearly when the acceleration is constant
.
Therefore, for constant acceleration, the velocity is changing.
Answer:
an object with a constant acceleration always have:
A. changing velocity
Answer:
i hope it helps you please mark me as brainliest
Explanation:
Molecular theory of magnetism states, "If molecular magnets align in a row, then the substance exhibits magnetic property. If they are kept haphazardly, they do not exhibit magnetic property." This is the molecular theory of magnetism. If molecular magnets align in a row, then the substance exhibits magnetic property.