Answer:
7.2 V
Explanation:
The three batteries are connected in series to the terminals of the phone: it means that they are connected along the same branch, so the current flowing through them is the same.
This also means that the potential difference across the phone will be equal to the sum of the voltages provided by each battery.
Here, the voltage provided by each battery is
V = 2.4 V
So, the overall voltage will be
V = 2.4 V + 2.4 V + 2.4 V = 7.2 V
Answer:
The width of the slit is 0.4 mm (0.00040 m).
Explanation:
From the Young's interference expression, we have;
(λ ÷ d) = (Δy ÷ D)
where λ is the wavelength of the light, D is the distance of the slit to the screen, d is the width of slit and Δy is the fringe separation.
Thus,
d = (Dλ) ÷ Δy
D = 3.30 m, Δy = 4.7 mm (0.0047 m) and λ = 563 nm (563 ×
m)
d = (3.30 × 563 ×
) ÷ (0.0047)
= 1.8579 ×
÷ 0.0047
= 0.0003951 m
d = 0.00040 m
The width of the slit is 0.4 mm (0.00040 m).
Answer:
Number of electrons, 
Explanation:
A strong lightning bolt transfers an electric charge of about 16 C to Earth, q = 16 C
We need to find the number of electrons that transferred. Let there are n electrons transferred. It is given by using quantization of electric charge as :
q = ne

e is elemental charge


So, there are
electrons that gets transferred. Hence, this is the required solution.
Answer:
Initial velocity, U = 28.73m/s
Explanation:
Given the following data;
Final velocity, V = 35m/s
Acceleration, a = 5m/s²
Distance, S = 40m
To find the initial velocity (U), we would use the third equation of motion.
V² = U² + 2aS
Where;
V represents the final velocity measured in meter per seconds.
U represents the initial velocity measured in meter per seconds.
a represents acceleration measured in meters per seconds square.
S represents the displacement measured in meters.
Substituting into the equation, we have;
35² = U + 2*5*40
1225 = U² + 400
U² = 1225 - 400
U² = 825
Taking the square root of both sides, we have;
Initial velocity, U = 28.73m/s