Answer:
They test it using the scientific method.
First, consider the steps to heat the sample from 209 K to 367K.
1) Heating in liquid state from 209 K to 239.82 K
2) Vaporaizing at 239.82 K
3) Heating in gaseous state from 239.82 K to 367 K.
Second, calculate the amount of heat required for each step.
1) Liquid heating
Ammonia = NH3 => molar mass = 14.0 g/mol + 3*1g/mol = 17g/mol
=> number of moles = 12.62 g / 17 g/mol = 0.742 mol
Heat1 = #moles * heat capacity * ΔT
Heat1 = 0.742 mol * 80.8 J/mol*K * (239.82K - 209K) = 1,847.77 J
2) Vaporization
Heat2 = # moles * H vap
Heat2 = 0.742 mol * 23.33 kJ/mol = 17.31 kJ = 17310 J
3) Vapor heating
Heat3 = #moles * heat capacity * ΔT
Heat3 = 0.742 mol * 35.06 J / (mol*K) * (367K - 239.82K) = 3,308.53 J
Third, add up the heats for every steps:
Total heat = 1,847.77 J + 17,310 J + 3,308.53 J = 22,466.3 J
Fourth, divide the total heat by the heat rate:
Time = 22,466.3 J / (6000.0 J/min) = 3.7 min
Answer: 3.7 min
Nothing unless it was dug out from roots if not they would grom back in a long period of time
Question:
How many neutrons are there in 186W
Answer:
112
hope it helps (^^)
# Cary on learning
As I am reading the problem, I see they gave you two pressures, one volume and they are asking for another volume. this should give you a hint that you need to use the following formula.
P1V1= P2V2
P1= 1.00 atm
V1= 0.50 ft³
P2= 3.00 atm
V2= ?
Now we plug the values
(1.00 x 0.50)= (3.00 x V2)
V2= 0.17 ft³