Given that
Mass of water = 65.34 g
Amount of heat = mass of water * specific heat (temperature change
)
= 65.34 g * 4.184 J / g-C ( 21.75-18.43 )C
= 907.63 J
= 0.908 KJ
And
1 cal = 4.186798 J
907.63 J * 1 cal / 4.186798 J =216.78 cal
Or0.218 kcal
Answer
False
Explanation
Specific heat is the amount of heat per unit mass required to rise the temperature of a substance by one degree celsius.It is expressed in units of thermal energy per degree temperature.A calorimeter is used when measuring the heat capacity of a reaction.Molar heat capacity is amount of heat required to raise the temperature of a substance by one degree Celsius.
1.1214 mL will a 0.205-mole sample of He occupy at 3.00 atm and 200 K.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Using equation PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 3.00 atm
V= ?
n=0.205 mole
R= 
T=200 K
Putting value in the given equation:


V= 1.1214 mL
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
Answer:
The noble gases with complete outermost shell electrons.
Explanation:
Noble gases or inert gases do not react chemically with other elements because they have a complete configuration of their electronic shells. What drives chemical reaction is simply the exchange of electrons between two or more atoms. It can be a loss, a gain or simple sharing of electrons in order to achieve a complete configuration just like those of noble gases.