It's Oxygen.
electronegativity is an arbitrary measure of how much will an electron get attracted to an atom of an element
as we know, oxygen is the best at accepting electrons from this list, so the answer is oxygen
Answer:
All description is given in explanation.
Explanation:
Van der Waals forces:
It is the general term used to describe the attraction or repulsion between the molecules. Vander waals force consist of two types of forces:
1. London dispersion forces
2. Dipole-dipole forces
1. London dispersion forces:
These are the weakest intermolecular forces. These are the temporary because when the electrons of atoms come close together they create temporary dipole, one end of an atom where the electronic density is high is create negative pole while the other becomes positive . These forces are also called induce dipole- induce dipole interaction.
2. Dipole-dipole forces:
These are attractive forces , present between the molecules that are permanently polar. They are present between the positive end of one polar molecules and the negative end of the other polar molecule.
Hydrogen bonding:
It is the electrostatic attraction present between the atoms which are chemically bonded. The one atom is hydrogen while the other electronegative atoms are oxygen, nitrogen or flourine. This is weaker than covalent and ionic bond.
Ionic bond or electrostatic attraction:
It is the electrostatic attraction present between the oppositely charged ions. This is formed when an atom loses its electron and create positive charge and other atom accept its electron and create negative charge.
Hydrophobic interaction:
It is the interaction between the water and hydrophobic material. The hydrophobic materials are long chain carbon containing compound. These or insoluble in water.
Covalent bond:
These compounds are formed by the sharing of electrons between the atoms of same elements are between the different element's atoms. The covalent bond is less stronger than ionic bond so require less energy to break as compared to the energy require to break the ionic bond.
Answer: -
12.59
Explanation: -
Strength of NaOH = 0.0179 M
Volume of NaOH = 58.0 mL = 58.0/1000 = 0.058 L
Number of moles = 0.0179 M x 0.058 L
= 1.04 x 10⁻³ mol
Mol of [OH⁻] given by NaOH = 1.04 x 10⁻³ mol
Strength of Ba(OH)₂ = 0.0294 M
Volume of Ba(OH)₂ = 60.0 mL = 60.0/1000 = 0.060 L
Number of moles = 0.0294 M x 0.060 L
= 1.76 x 10⁻³ mol
Mol of [OH⁻] given by Ba(OH)₂ =2 x 1.76 x 10⁻³ mol
Total [OH⁻] = 1.04 x 10⁻³ mol + 2 x 1.76 x 10⁻³ mol
= 4.56 x 10⁻³ mol
Total volume of the mixture = 58.0 + 60.0
= 118.0 mL
118.0 mL of the solution has 4.56 x 10⁻³ mol [OH⁻]
1000 mL of the solution has 
= 0.0386 mol
Using the relation
pOH = - log [OH-]
= - log 0.0386
= 1.41
Using the relation
pH + pOH = 14
pH = 14 - 1.41
= 12.59