Answer:
So energy is not conserved and inelastic shock
Explanation:
In the collision between a bullet and a ballistic pendulum, characterized in that the bullet is embedded in the block, if the kinetic energy is conserved the shock is elastic and if it is not inelastic.
Let's find the kinetic energy just before the crash
K₀ = ½ m vₓ₀²
After the crash we can use the law of conservation of energy
Starting point. Right after the crash, before starting to climb
Em₀ = K = ½ (m + M) v₂²
Final point. At the maximum height of the pendulum
= U = (m + M) g h
Where m is the mass of the bullet and M is the mass of the pendulum
Em₀ = Em_{f}
½ (m + M) v₂² = (m + M) g h
v₂ = √ 2g h
Now we can calculate the final kinetic energy
K_{f} = ½ (m + M) v₂²²
K_{f} = ½ (m + M) (2gh)
The relationship between these two kinetic energies is
K₀ / K_{f} = ½ m vₓ₀² / (½ (m + M) 2 g h)
K₀ / K_{f} = m / (m + M) vₓ₀² / 2 g h
We can see that in this relationship the Ko> Kf
So energy is not conserved and inelastic shock