Answer:
If you've learnt sin(A+B) = sinAcosB + cosAsinB,
sin(4u)
= sin(2u+2u)
= sin(2u)cos(2u) + cos(2u)sin(2u)
= 2 sin(2u) cos(2u).
Step-by-step explanation:
Given problem is to find nearest number,
= 8888888/2915
quotient = 3049
remainder= 1053
Now, 2915-1053 = 1862
8888888+1862 = 8890750
8888888-1053 = 8887835
Two numbers nearest to 8888888 which are exactly divisible by 2915 is 8887835 and 8890750
*Given
Money of Phoebe - 3 times as much as Andy
Money of Andy - 2 times as much as Polly
Total money of Phoebe, - £270
Andy and Polly
*Solution
Let
B - Phoebe's money
A - Andy's money
L - Polly's money
1. The money of the Phoebe, Andy, and Polly, when added together would total £270. Thus,
B + A + L = £270 (EQUATION 1)
2. Phoebe has three times as much money as Andy and this is expressed as
B = 3A
3. Andy has twice as much money as Polly and this is expressed as
A = 2L (EQUATION 2)
4. This means that Phoebe has ____ as much money as Polly,
B = 3A
B = 3 x (2L)
B = 6L (EQUATION 3)
This step allows us to eliminate the variables B and A in EQUATION 1 by expressing the equation in terms of Polly's money only.
5. Substituting B with 6L, and A with 2L, EQUATION 1 becomes,
6L + 2L + L = £270
9L = £270
L = £30
So, Polly has £30.
6. Substituting L into EQUATIONS 2 and 3 would give us the values for Andy's money and Phoebe's money, respectively.
A = 2L
A = 2(£30)
A = £60
Andy has £60
B = 6L
B = 6(£30)
B = £180
Phoebe has £180
Therefore, Polly's money is £30, Andy's is £60, and Phoebe's is £180.
1cm = 10mm
therefore 40cm = 400mm
Answer:
34.3 in, 36.3 in
Step-by-step explanation:
From the question given above, the following data were obtained:
Hypothenus = 50 in
1st leg (L₁) = L
2nd leg (L₂) = 2 + L
Thus, we can obtain the value of L by using the pythagoras theory as follow:
Hypo² = L₁² + L₂²
50² = L² + (2 + L)²
2500 = L² + 4 + 4L + L²
2500 = 2L² + 4L + 4
Rearrange
2L² + 4L + 4 – 2500 = 0
2L² + 4L – 2496 = 0
Coefficient of L² (a) = 2
Coefficient of L (n) = 4
Constant (c) = –2496
L = –b ± √(b² – 4ac) / 2a
L = –4 ± √(4² – 4 × 2 × –2496) / 2 × 2
L = –4 ± √(16 + 19968) / 4
L = –4 ± √(19984) / 4
L = –4 ± 141.36 / 4
L = –4 + 141.36 / 4 or –4 – 141.36 / 4
L = 137.36/ 4 or –145.36 / 4
L = 34.3 or –36.3
Since measurement can not be negative, the value of L is 34.3 in
Finally, we shall determine the lengths of the legs of the right triangle. This is illustrated below:
1st leg (L₁) = L
L = 34.4
1st leg (L₁) = 34.3 in
2nd leg (L₂) = 2 + L
L = 34.4
2nd leg (L₂) = 2 + 34.3
2nd leg (L₂) = 36.3 in
Therefore, the lengths of the legs of the right triangle are 34.3 in, 36.3 in