Answer:
The integrals was calculated.
Step-by-step explanation:
We calculate integrals, and we get:
1) ∫ x^4 ln(x) dx=\frac{x^5 · ln(x)}{5} - \frac{x^5}{25}
2) ∫ arcsin(y) dy= y arcsin(y)+\sqrt{1-y²}
3) ∫ e^{-θ} cos(3θ) dθ = \frac{e^{-θ} ( 3sin(3θ)-cos(3θ) )}{10}
4) \int\limits^1_0 {x^3 · \sqrt{4+x^2} } \, dx = \frac{x²(x²+4)^{3/2}}{5} - \frac{8(x²+4)^{3/2}}{15} = \frac{64}{15} - \frac{5^{3/2}}{3}
5) \int\limits^{π/8}_0 {cos^4 (2x) } \, dx =\frac{sin(8x} + 8sin(4x)+24x}{6}=
=\frac{3π+8}{64}
6) ∫ sin^3 (x) dx = \frac{cos^3 (x)}{3} - cos x
7) ∫ sec^4 (x) tan^3 (x) dx = \frac{tan^6(x)}{6} + \frac{tan^4(x)}{4}
8) ∫ tan^5 (x) sec(x) dx = \frac{sec^5 (x)}{5} -\frac{2sec^3 (x)}{3}+ sec x
Answer:
f(3) = 6
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = 1/3x + 5
f(3) is x = 3
<u>Step 2: Evaluate</u>
- Substitute: f(3) = 1/3(3) + 5
- Multiply: f(3) = 1 + 5
- Add: f(3) = 6
What do you mean I don’t get it
Answer:
3x+y= -6
Step-by-step explanation:
An outside angle equals the sum of the two opposite inside angles.
So you have:
(5x-35) = 2x +58
Solve for X then you can calculate Angle B:
(5x-35) = 2x +58
Subtract 2x from both sides:
3x -35 = 58
Add 35 to both sides:
3x = 93
Divide both sides by 3:
X = 93 /3
x = 31
Now for Angle B, replace x with 31:
Angle B = 2x = 2(31) = 62 degrees.