I believe the answer is <span>can be elements or compounds
In this case, elements in the decomposition reaction is the substance that cannot be separated into simpler substances.
Compounds, technically act as a reactant in the decomposition reaction, but since the reaction breakdown one substance into two or more, sometimes it exists in the product.</span>
Answer:
P₂ = 1312.88 atm
Explanation:
Given data:
Initial temperature = 25°C
Initial pressure = 1250 atm
Final temperature = 40°C
Final pressure = ?
Solution:
Initial temperature = 25°C (25+273.15 = 298.15 K)
Final temperature = 40°C ( 40+273.15 = 313.15 k)
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
1250 atm / 298.15 K = P₂/313.15 K
P₂ = 1250 atm × 313.15 K / 298.15 K
P₂ = 391437.5 atm. K /298.15 K
P₂ = 1312.88 atm
The maximum number of covalent bonds formed by a single carbon atom is 4
Answer:
Explanation:
A tertiary alcohol is a compound (an alcohol) in which the carbon atom that has the hydroxyl group (-OH) is also bonded (saturated) to three different carbon atoms.
Based on the question, the only <u>tertiary alcohol that can result from C₆H₁₄O that have a 4-carbon chain</u> is
2-hydroxy-2,3-dimethylbutane
H OH H H
| | | |
H - C - C - C - C - H
| | | |
H CH₃ CH₃ H
From the above, we can see that the carbon atom having the hydroxyl group is also bonded to three other carbon atoms. And since we aren't considering stereochemistry, this is the only tertiary alcohol we can have with a 4-carbon chain
Answer: Option (d) is the correct answer.
Explanation:
An atom or element which has the ability to readily gain an electron will have high electronegativity.
Both Beryllium and Calcium are alkaline earth metals and hence they are electropositive in nature.
Whereas both iodine and nitrogen are electronegative in nature. But across the period there is an increase in electronegativity and down the group there is a decrease in electronegativity.
Nitrogen belongs to period 2 and iodine belongs to the bottom of group 17. Thus, we can conclude that nitrogen is more electronegative than iodine.