Answer:
Exothermic reaction: In exothermic reaction, energy is transferred to the surroundings, and the surrounding temperature increases, this is known as exothermic reaction. In other words energy exits in exothermic reaction. Some example of exothermic reactions are:
1) Neutralisation reaction.
2) Combustion reaction.
3) Some oxidation reaction.
Endothermic reaction: In endothermic reaction, energy is taken in from the surrounding, and the surrounding temperature decreases, this is known as endothermic reaction. In other words energy enters in endothermic reaction. Some example of exothermic reactions are:
1) Thermal decomposition.
2) Reaction between citric acid and sodium hydrogen carbonate.
Answer:
It depends on the number of significant figures you are changing to
Explanation:
6.02×1023=6158.46
1 sig fig = 6000
2 sig fig = 6200
3 sig fig = 6160
4 sig fig = 6158
5 sig fig = 6158.5
6 sig fig = 6158.46
When solving significant figures you have to consider the number after each number like in the case of changing to two sig fig the number following one is five and when the number is up to or greater than five you add a value of one to the number before it. But in a case where the number is less than five you just leave it like that like in the case of changing to one sig fig
Answer:
The ΔH° for the following reaction is -794 kJ, hence exothermic reaction,
Explanation:
ΔH° = ?
We are given with:






ΔH° =
(Energies required to break bonds on reactant side) - (Energies released on formation of bonds on product side)



endothermic reaction
exothermic reaction
The ΔH° for the following reaction is -794 kJ, hence exothermic reaction,
Answer:
The molar mass of the gas is 44.19 g/mol
Explanation:
Amount of sample of gas = m = 13.5 g
Volume occupied by the gas = V = 5.10 L
Pressure of the gas = P = 149.83 KPa
1 KPa = 0.00986 atm
P = 
Assuming M g/mol to be the molar mass of the gas
Assuming the gas is behaving as an ideal gas

The molar mass of gas is 44.19 g/mol