Answer:
This idea of reflection correlating with a mirror image is similar in math.
This complete guide to reflecting over the x axis and reflecting over the y axis will provide a step-by-step tutorial on how to perform these translations.
First, let’s start with a reflection geometry definition
Math Definition: Reflection Over the X Axis
A reflection of a point, a line, or a figure in the X axis involved reflecting the image over the x axis to create a mirror image. In this case, the x axis would be called the axis of reflection.
Math Definition: Reflection Over the Y Axis
A reflection of a point, a line, or a figure in the Y axis involved reflecting the image over the Y axis to create a mirror image. In this case, theY axis would be called the axis of reflection.
What is the rule for a reflection across the X axis?
The rule for reflecting over the X axis is to negate the value of the y-coordinate of each point, but leave the x-value the same.
\left[x _{2}\right] = \left[ \frac{-1+i \,\sqrt{3}+2\,by+\left( -2\,i \right) \,\sqrt{3}\,by}{2^{\frac{2}{3}}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}+\frac{\frac{ - \sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{24}+\left( \frac{-1}{24}\,i \right) \,\sqrt{3}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{\sqrt[3]{2}}\right][x2]=⎣⎢⎢⎢⎢⎡2323√(432by+√(−6912+41472by+103680by2+55296by3))−1+i√3+2by+(−2i)√3by+3√224−3√(432by+√(−6912+41472by+103680by2+55296by3))+(24−1i)√33√(432by+√(−6912+41472by+103680by2+55296by3))⎦⎥⎥⎥⎥⎤
totally answer.
Answer:
9
Step-by-step explanation:
substituting 2 for the x
y = 2(2) + 5
y = 4 + 5
y = 9
2x5.4x4.5x4.2x5.3x3. 5.5x3