Answer:

☯ Question :
- How fast is a wave travelling if it has a wavelength of 7 meters and a frequency of 11 Hz?
☯ 
☥ Given :
- Wavelength ( λ ) = 7 meters
- Frequency ( f ) = 11 Hz
☥ To find :
☄ We know ,

where ,
- v = speed of sound
- f = frequency
- λ = wavelength
Now, substitute the values and solve for v.
➺ 
➺ 
-------------------------------------------------------------------
✑ Additional Info :
- Frequency : The number of complete vibrations made by a particle of a body in one second is called it's frequency. It is denoted by the letter f . The SI unit of frequency is hertz ( Hz ).
- Wavelength : The distance between two consecutive compressions or rarefactions of a sound wave is called wavelength of that wave. It is denoted by λ ( lambda ) and it's SI unit is m.
- Speed of a sound wave : The distance covered by a sound wave in one second is called speed of sound wave. It depends on the product of wavelength and frequency of the wave.
Hope I helped!
Have a wonderful time! ツ
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
The first law states that “objects at rest and objects in motion remain in motion in a straight line unless acted upon by an unbalanced force”. Keeping the ice smooth will make sure there is not friction, friction would slow the puck down
Answer:
I think it's bigger than most galaxies
Given :
A mover slides a refrigerator weighing 650 N at a constant velocity across the floor a distance of 8.1 m.
The force of friction between the refrigerator and the floor is 230 N.
To Find :
How much work has been performed by the mover on the refrigerator.
Solution :
Since, refrigerator is moving with constant velocity.
So, force applied by the mover is also 230 N ( equal to force of friction ).
Now, work done in order to move the refrigerator is :

Hence, this is the required solution.
C. Amount of oxygen
The others either change but don’t decrease or they increase.