<em>option C gas.............................. ᕕ( ᐛ )ᕗ</em>
Answer:
0.214 L
Explanation:
Step 1: Write the balanced equation
This is a single displacement reaction.
Zn(s) + 2 HCl(aq) ⇒ ZnCl₂(aq) + H₂(g)
Step 2: Calculate the moles corresponding to 0.625 g of Zn
The molar mass of Zn is 65.38 g/mol.
0.625 g × 1 mol/65.38 g = 9.56 × 10⁻³ mol
Step 3: Calculate the moles of H₂ produced from 9.56 × 10⁻³ moles of Zn
The molar ratio of Zn to H₂ is 1:1. The moles of H₂ produced are 1/1 × 9.56 × 10⁻³ mol = 9.56 × 10⁻³ mol.
Step 4: Calculate the volume occupied by 9.56 × 10⁻³ moles of hydrogen
Assuming standard pressure and temperature, 1 mole of hydrogen occupies 22.4 L.
9.56 × 10⁻³ mol × 22.4 L/1 mol = 0.214 L
Answer:
B. Hydrogen and oxygen molecules
General Formulas and Concepts:
<u>Chemistry - Reactions</u>
- Reactants are always on the left side of the arrow
- Products are always on the right side of the arrow
Explanation:
<u>Step 1: Define</u>
Reaction RxN: 2H₂ + O₂ → 2H₂O
<u>Step 2: Identify</u>
Reactants: H₂ and O₂
Products: H₂O
Answer:
This would support Dalton's postulates that proposed the atoms are indivisible because no small particles are involved.
Explanation:
Experiment using the gas discharge tube by J.J Thomson led to the discovery of cathode rays which are now known as electrons.
Primarily, Thomson's experiment led to the discovery of cathode rays, electrons, as subatomic particles.
If the size of the atoms observed at the cathode is the same as that of the rays,we can conclude that the particles of the rays are the simplest form of matter we can have. This would suggest that the atom is indeed the smallest indivisible particle of a matter according to Dalton.
The answer to that question would be Activation energy. If would like me to elaborate just let me know. :)