1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Advocard [28]
3 years ago
12

Math Escape Level 3 plz hurry it is due to today bestie

Mathematics
1 answer:
fenix001 [56]3 years ago
8 0

Answer:

1

Step-by-step explanation:

x-9=-8

x=-8+9

x=1

You might be interested in
Solve equation step by step...<br> 6x+13y=15
Viktor [21]
13y=15-6x
y=(15-6x)/13
8 0
3 years ago
The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012)
Wittaler [7]

Answer:

Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.

Test Statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1 .

Step-by-step explanation:

We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;

Let A = Math Scores ,B = Writing Scores  and D = difference between both

So, \mu_A = Population mean for the math scores

       \mu_B = Population mean for the writing scores

 Let \mu_D = Difference between the population mean for the math scores and the population mean for the writing scores.

            <em>  Null Hypothesis, </em>H_0<em> : </em>\mu_A = \mu_B<em>     or   </em>\mu_D<em> = 0 </em>

<em>      Alternate Hypothesis, </em>H_1<em> : </em>\mu_A \neq  \mu_B<em>      or   </em>\mu_D \neq<em> 0</em>

Hence, Test Statistics used here will be;

            \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1    where, Dbar = Bbar - Abar

                                                               s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}

                                                               n = 12

Student        Math scores (A)          Writing scores (B)         D = B - A

     1                      540                            474                                   -66

     2                      432                           380                                    -52  

     3                      528                           463                                    -65

     4                       574                          612                                      38

     5                       448                          420                                    -28

     6                       502                          526                                    24

     7                       480                           430                                     -50

     8                       499                           459                                   -40

     9                       610                            615                                       5

     10                      572                           541                                      -31

     11                       390                           335                                     -55

     12                      593                           613                                       20  

Now Dbar = Bbar - Abar = 489 - 514 = -25

 Bbar = \frac{\sum B_i}{n} = \frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}  = 489

 Abar =  \frac{\sum A_i}{n} = \frac{540+432+528+574+448+502+480+499+610+572+390+593}{12} = 514

 ∑D_i^{2} = 22600     and  s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}} = \sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} } = 37.05

So, Test statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1

                            = \frac{-25 - 0}{\frac{37.05}{\sqrt{12} } } follows t_1_1   = -2.34

<em>Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .</em>

Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.

8 0
3 years ago
Use the given transformation x=4u, y=3v to evaluate the integral. ∬r4x2 da, where r is the region bounded by the ellipse x216 y2
exis [7]

The Jacobian for this transformation is

J = \begin{bmatrix} x_u & x_v \\ y_u & y_v \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}

with determinant |J| = 12, hence the area element becomes

dA = dx\,dy = 12 \, du\,dv

Then the integral becomes

\displaystyle \iint_{R'} 4x^2 \, dA = 768 \iint_R u^2 \, du \, dv

where R' is the unit circle,

\dfrac{x^2}{16} + \dfrac{y^2}9 = \dfrac{(4u^2)}{16} + \dfrac{(3v)^2}9 = u^2 + v^2 = 1

so that

\displaystyle 768 \iint_R u^2 \, du \, dv = 768 \int_{-1}^1 \int_{-\sqrt{1-v^2}}^{\sqrt{1-v^2}} u^2 \, du \, dv

Now you could evaluate the integral as-is, but it's really much easier to do if we convert to polar coordinates.

\begin{cases} u = r\cos(\theta) \\ v = r\sin(\theta) \\ u^2+v^2 = r^2\\ du\,dv = r\,dr\,d\theta\end{cases}

Then

\displaystyle 768 \int_{-1}^1 \int_{-\sqrt{1-v^2}}^{\sqrt{1-v^2}} u^2\,du\,dv = 768 \int_0^{2\pi} \int_0^1 (r\cos(\theta))^2 r\,dr\,d\theta \\\\ ~~~~~~~~~~~~ = 768 \left(\int_0^{2\pi} \cos^2(\theta)\,d\theta\right) \left(\int_0^1 r^3\,dr\right) = \boxed{192\pi}

3 0
2 years ago
Find the range of the function f(x) = 4x - 7,
ratelena [41]

Answer:

(- 19, - 11, 5, 25)

Step-by-step explanation:

The given function is f(x) = 4x - 7

Now, we have to find the range of the given function for the given domains.

The domains are given as (2 - 5, - 1, 3, 8) i.e. (- 3, - 1, 3, 8).

Therefore, f(- 3) = 4(- 3) - 7 = - 19

f(- 1) = 4(- 1) - 7 = - 11

f(3) = 4(3) - 7 = 5

f(8) = 4(8) - 7 = 25

So, the ranges of the function are (- 19, - 11, 5, 25) (Answer)

8 0
4 years ago
Xa farmer wants to fence in a rectangular plot of land adjacent to the north wall of his barn. no fencing is needed along the ba
Kay [80]
Width=34.2
Length=65.2
6 0
3 years ago
Other questions:
  • The two triangles below are similar. Which pie are corresponding sides? LN &amp; MN, MN &amp; QR, LM &amp; QR, or LM &amp; PQ?
    15·1 answer
  • Kirsten and Molly are on a 3-day bike ride. The entire route is 156 miles. On the first day, they biked 64 miles. On the second
    10·2 answers
  • The decay of 277 mg of an isotope is described by the function A(t)= 277e-0.019t, where t is time in years. Find the amount left
    5·1 answer
  • B / 3 - 6 equals 9. ​
    12·1 answer
  • What two numbers multiply to get 40 but add to get -14
    7·2 answers
  • What’s the missing length??
    6·1 answer
  • May I have help with This question please I’ll give you brainliest
    12·2 answers
  • Billy has 201 packages of postcards. Each package has 18 cards. Use rounding to estimate. About
    7·1 answer
  • Please help me please
    15·2 answers
  • 8) What is 7.1 x 10-3 in standard form? A) 0.0071 B) 0.071 C) 710 x D) 7,100
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!