Answer:
r = 1
Step-by-step explanation:
slope = change in y / change in x, so:
change in y / change in x = 2/3
5 - r / 7 - 1 = 2/3
5 - r / 6 = 2/3

now solve this equation.
first, multiply both sides by 6 to get rid of the fraction:

subtract 5 from both sides

multiply both sides by -1

Answer:

Step-by-step explanation:
The absolute maximum of a continuous function
is where
. Therefore, we must differentiate the function and then set
and
to determine the value of
:







Therefore, when
, the absolute maximum of the function is
.
I've attached a graph to help you visually see this.
Not sure why such an old question is showing up on my feed...
Anyway, let

and

. Then we want to find the exact value of

.
Use the angle difference identity:

and right away we find

. By the Pythagorean theorem, we also find

. (Actually, this could potentially be negative, but let's assume all angles are in the first quadrant for convenience.)
Meanwhile, if

, then (by Pythagorean theorem)

, so

. And from this,

.
So,
Answer:
-11/12 − 1/6
-3/5 + 3/20
-2/3 + 1/12
Step-by-step explanation:
The points which represents the vertices of the given equation are; (15, −2) and (−1, −2).
<h3>Which points among the answer choices represents the vertices of the ellipse whose equation is given?</h3>
The complete question gives the equation of the ellipse as; (x-7)²/64+(y+2)²/9=1.
Since, It follows from convention that general equation of ellipse with centre as (h, k) takes the form;
(x-h)²/a² +(y-k)²/b² = 1.
Consequently, it follows from observation that the value of a and b in the given equation in the task content is; √64 = 8 and √9 = 3 respectively.
Since, 8 > 3, The vertices of the ellipse are given by; (h±a, k).
The vertices in this scenario are therefore;
(7+8, -2) and (7-8, -2).
= (15, -2) and (-1, -2).
Read more on vertices of an ellipse;
brainly.com/question/9525569
#SPJ1