1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Goryan [66]
3 years ago
6

Angle 1 and Angle 2 form a linear pair. If the measure of angle is 113°, find the measure of angle 2.​

Mathematics
1 answer:
LuckyWell [14K]3 years ago
5 0

Answer:

<2 =67

Step-by-step explanation:

A linear pair adds to 180 degrees

<1 + <2 =180

113+ <2 = 180

<2 = 180-113

<2 =67

You might be interested in
Which statement is correct PLEASE HELP ILL GOVE YOU BRAINLIEST.
Valentin [98]
The first one is correct, just match the numbers with the corresponding sides of each triangle
6 0
3 years ago
A water pitcher holds 3.5 quarts of water. How many liters of water does it hold? A 2.2 liters B) 3.3 liters C)3.7 liters D) 5.6
Marina CMI [18]
There is 0.946 liter in 1 quart

3.5/0.946 = 3.6997

~3.7 liters, or C

C is your answer

hope this helps
4 0
3 years ago
Read 2 more answers
Determine the greatest intergral value of K for which 2x^2 - Kx +2 =0 will have non-real roots ...Use quadratic inequalities to
Mrac [35]

Answer:

Greatest integral value of K = 3.

Step-by-step explanation:

The nature of the roots of a quadratic equation is determined by the sign of the discriminant, b^2 - 4ac.  For non-real roots this is negative.

2x^2 - kx + 9 = 0

The discriminant = (-k)^2 - 4*2*2 , so:

k^2 - 16 < 0  for non-real roots.

k^2 < 16

k <  √16

k  < 4

So the answer is 3.

The greatest integral value is 8.

6 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
Please Help with 31 and 32. I am really confused. Will Select Brainliest Answer.
EastWind [94]

Answer: C, D

Step-by-step explanation:

31 - use the Pythagorean theorem to find the distance

a^{2} +b^{2} =c^{2}

a = 45

b = 28

plug in values

45^{2} +28^{2} =c^{2} = 2809

c = 53

answer choice C

32 - non linear functions are functions that aren't straight. if a function has anything besides a constant or an x variable to the power of 1, it is not linear

A - this is linear because -18 is a constant

B - this is linear because it only contains constants and an x variable to the power of 1

C - this is linear because it only contains an x variable to the power of 1

D - this is not linear because the x variable is on the bottom of the fraction, so x is to a power of -1

answer choice D

4 0
3 years ago
Other questions:
  • (2x^3-5x^2+8)(x+3)=?
    14·1 answer
  • a committee has eleven members. there are 3 members that currently serve as the boards chairman, ranking members, and treasurer.
    14·1 answer
  • Keith has 4 dogs. I have 3 times as many dogs as keith. How many dogs do I have?
    8·2 answers
  • A bicycle wheel is rotating about a fixed axis at 10 rev/s in a clockwise sense. Five seconds later the wheel is rotating at 50
    6·1 answer
  • Determine whether each table represents a linear quadratic or exponential function
    7·1 answer
  • Solve the inequality. 4(p – 4) &gt; 12 A. p 3 C. p &gt; 16 D. p &gt; 7 it would be nice if you can show me how you did step by s
    5·1 answer
  • In a survey 9/25 students ride the bus and 19/50 walk to school. What fraction of students ride the bus or walk?
    12·2 answers
  • A math test has 12 multiplication problems and 24 division problems.
    5·2 answers
  • Help! Please! <br> Factor the polynomial completely.<br> 32z^5-2z
    9·2 answers
  • Suppose that y varies directly with x<br> and y = 5 when x = 6. What is y<br> dy<br> when x = 5?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!