True, scientists often talk to each other to figure out if their results were similar and what they could have done better.
Although, talking to other scientists does have risks, other scientists could copy your work and further better it.
So, your final answer is TRUE, sorry for the long answer, I needed to have a word count about 20 characters and then I got carried away! lol
A. the medium through which the light travels changes.
Explanation:
Light waves will continue to travel in a straight line in all directions from their source unless the medium through which the light travels changes.
A change in medium causes light to exhibit different properties. Also, when light hits an obstacle, they can be diffracted.
- The way light travels on crossing a boundary differs.
- At the boundary between two medium, light can either be reflected back or refracted when they cross the medium
- This will cause the light rays to bend towards or away from the normal depending on the properties of the medium.
Learn more:
Refraction brainly.com/question/12370040
#learnwithBrainly
Answer: 166.67km/hr
Explanation:
Given the following :
Distance traveled = 250km
Time taken = 1.5 hours
Recall :
Speed = Distance traveled / time taken
Speed = 250 km / 1.5 hours
Speed = 166. 67 km/hr
Speed in m/s:
166.67km/hr = (166.67 × 1000)m / 3600 s
= 166670m / 3600s
= 46.3m/s
Answer:
Choices A, B, and C are correct.
Explanation:
Let us look at each of the choices one by one:
A. It is a vector
Yes. Velocity is a vector, or it's a speed with direction.
B. It is the change in displacement divided by the change in time.
Yes. The velocity can be written as

where
is the displacement—a vector quantity.
C. It can be measured in meters per second.
Yes. The units of velocity are m/s, but also with a unit vector indicating the direction.
D. It is the slope of the acceleration vs. time graph.
Nope. The velocity is the slope of displacement vs. time graph.
Hence, only choices A, B, and C are correct.
Answer:
b and d
a, c, e, and f
Explanation:
Ideal gas law:
PV = nRT
Solving for temperature:
T = PV / (nR)
Therefore, temperature is directly proportional to pressure and volume, and inversely proportional to the number of molecules.
T = k PV / N
Let's say that T₀ is the temperature when P = 100 kPa, V = 4 L, and N = 6×10²³.
a) T = k PV / N = T₀
b) T = k (2P) V / N = 2T₀
c) T = k (P/2) (2V) / N = T₀
d) T = k PV / (N/2) = 2T₀
e) T = k P (V/2) / (N/2) = T₀
f) T = k (P/2) V / (N/2) = T₀
b and d have the highest temperature,
a, c, e, and f have the lowest temperature.