1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zimovet [89]
3 years ago
8

Pasar 26 Segundos a Horas

Physics
1 answer:
ivolga24 [154]3 years ago
3 0

For this case we must convert 26 seconds to hours,

By definition we have to:

1 hour equals 3600 seconds.

So, if we propose a rule of three we have:

1 hour ----------> 3600 seconds

x ------------------> 26 seconds

Where the variable "x" represents the number of hours equivalent to 26 seconds:

x = \frac {26 * 1} {3600}\\x = 0.0072

Thus, 26 seconds equals approximately 0.0072 hours.

Answer:

0.0072 hours

You might be interested in
When nasa launched the kepler spacecraft in 2009 what was its primary mission
DiKsa [7]
The Kepler mission is specifically designed to survey a portion of our region of the Milky Way galaxy<span> to discover dozens of Earth-size planets in or near the </span>habitable zone<span> and determine how many of the billions of stars in our galaxy have such planets</span>
3 0
3 years ago
How fast is an object moving if it has 10000J of kinetic energy and a mass of 5kg​
nignag [31]

Answer:

this is for the ppl who delete my answer

suck 8--

Explanation:

4 0
3 years ago
Calculate the speed of a car that traveled 200 kilometers in 3 hours.
nignag [31]

Answer:

The units (km/h) tell you how to do this! 200km/3h = 66.66666666…. BUT technically you only have ONE significant digit: 3 so 66.666… rounded to ONE digit is 70km/h but that is probably not important in this intro class so V = 66.67 or 67 km/h

8 0
3 years ago
Read 2 more answers
What material is rare in the atmosphere of earth, but common in the atmospheres of mars and venus?
Oksanka [162]
The answer is carbon dioxide
4 0
3 years ago
Two 22.7 kg ice sleds initially at rest, are placed a short distance apart, one directly behind the other, as shown in Fig. 1. A
boyakko [2]

Newton's third law of motion sates that force is directly proportional to the rate of change of momentum produced

(a) The final speeds of the ice sleds is approximately 0.49 m/s each

(b) The impulse on the cat is 11.0715 kg·m/s

(c) The average force on the right sled is 922.625 N

The reason for arriving at the above values is as follows:

The given parameters are;

The masses of the two ice sleds, m₁ = m₂ = 22.7 kg

The initial speed of the ice, v₁ = v₂ = 0

The mass of the cat, m₃ = 3.63 kg

The initial speed of the cat, v₃ = 0

The horizontal speed of the cat, v₃ = 3.05 m/s

(a) The required parameter:

The final speed of the two sleds

For the first jump to the right, we have;

By the law of conservation of momentum

Initial momentum = Final momentum

∴ m₁ × v₁ + m₃ × v₃ = m₁ × v₁' + m₃ × v₃'

Where;

v₁' = The final velocity of the ice sled on the left

v₃' = The final velocity of the cat

Plugging in the values gives;

22.7 kg × 0 + 3.63 × 0 = 22.7 × v₁' + 3.63 × 3.05

∴  22.7 × v₁'  = -3.63 × 3.05

v₁' =  -3.63 × 3.05/22.7 ≈ -0.49

The final velocity of the ice sled on the left, v₁' ≈ -0.49 m/s (opposite to the direction to the motion of the cat)

The final speed ≈ 0.49 m/s

For the second jump to the left, we have;

By conservation of momentum law,  m₂ × v₂ + m₃ × v₃ = m₂ × v₂' + m₃ × v₃'

Where;

v₂' = The final velocity of the ice sled on the right

v₃' = The final velocity of the cat

Plugging in the values gives;

22.7 kg × 0 + 3.63 × 0 = 22.7 × v₂' + 3.63 × 3.05

∴  22.7 × v₂'  = -3.63 × 3.05

v₂' =  -3.63 × 3.05/22.7 ≈ -0.49

The final velocity of the ice sled on the right = -0.49 m/s (opposite to the direction to the motion of the cat)

The final speed ≈ 0.49 m/s

(b) The required parameter;

The impulse of the force

The impulse on the cat = Mass of the cat × Change in velocity

The change in velocity, Δv = Initial velocity - Final velocity

Where;

The initial velocity = The velocity of the cat before it lands = 3.05 m/s

The final velocity = The velocity of the cat after coming to rest =

∴ Δv = 3.05 m/s - 0 = 3.05 m/s

The impulse on the cat = 3.63 kg × 3.05 m/s = 11.0715 kg·m/s

(c) The required information

The average velocity

Impulse = F_{average} × Δt

Where;

Δt = The time of collision = The time it takes the cat to finish landing = 12 ms

12 ms = 12/1000 s = 0.012 s

We get;

F_{average} = \mathbf{\dfrac{Impulse}{\Delta \ t}}

∴ F_{average} = \dfrac{11.0715 \ kg \cdot m/s}{0.012 \ s}  = 922.625 \ kg\cdot m/s^2 = 922.625 \ N  

The average force on the right sled applied by the cat while landing, \mathbf{F_{average}} = 922.625 N

Learn more about conservation of momentum here:

brainly.com/question/7538238

brainly.com/question/20568685

brainly.com/question/22257327

8 0
3 years ago
Other questions:
  • What happens when the dew point and the temperature are the same?
    10·1 answer
  • What's the difference between a wavelength and an an amplitude?
    10·2 answers
  • Which of the following is transferred in order for static electricity to occur?
    15·2 answers
  • How much work is done on a satellite in a circular orbit about earth?
    12·1 answer
  • In an experiment, one of the forces exerted on a proton is F⃗ =−αx2i^, where α=12N/m2. What is the potential-energy function for
    12·1 answer
  • Is gravity a field force
    10·1 answer
  • Plants use sunlight as energy to convert carbon dioxide and water into glucose and oxygen. Which best describes the reaction?
    14·2 answers
  • There is no centripetal force if the object moves in a long line. True or False?
    13·1 answer
  • The name of the bright star near the center that the other stars appear to be circling is:
    11·1 answer
  • I need help quick!! Urgent!
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!