Answer:
1.- para cubrir la superficie lateral 4.32 metros²
2.- Area de la base 2.15 metros²
3.- Volumen 1 m³
4.- Area total 6.47 metros²
Explanation:
El área lateral sera calcular el area de seis triangulos iguales cuya base es
0.80 de base x 6 lados = 4.80 metros perimetro de la base
4.80 perimetro de base x 1.80 arista lateral / 2 = 4.32m2
Area de la base:
Perímetro x Apotema / 2
Siendo la Apotema la altura de los triangulos que componen un hexagono calculada utilizando el teorema de pitágoras:

Apotema = 0.894427191
Area: 4.80 x 0.894427191 / 2 = 2.146625258
sumando el area de la base mas el area lateral se obtiene el area total
2.15 + 4.32 = 6.47 metros
Volumen de la pirámide:
Area de la Base x Altura / 3
2.15 x 1.40 / 3 = 1.00333 m3
Sun is the main source of energy
Answer:
1.635×10^-3m
Explanation:
Young modulus is the ratio of the tensile stress of a material to its tensile strain.
Young modulus = Tensile stress/tensile strain
Tensile stress = Force/Area
Given force = 130N
Area = Πr² = Π×(1.55×10^-3)²
Area = 4.87×10^-6m²
Tensile stress = 130/4.87×10^-6 = 8.39×10^7N/m²
Tensile strain = extension/original length
Tensile strain = e/3.9
Substituting in the young modulus formula given young modulus to be 2×10¹¹N/m²
2×10¹¹N/m² = 8.39×10^7/{e/3.9)}
2×10¹¹ = (8.39×10^7×3.9)/e
2×10¹¹e = 3.27×10^8
e = 3.27×10^8/2×10¹¹
e = 1.635×10^-3m
The stretch of the steel wire will be
1.635×10^-3m
Answer:
x = 1.6 + 1.7 t^2 omitting signs
a) at t = 0 x = 1.6 m
b) V = d x / d t = 3.4 t
at t = 0 V = 0
c) A = d^2 x / d t^2 = 3.4 (at t = 0 A = 3.4 m/s^2)
d) x = 1.6 + 1.7 * (4.4)^2 = 34.5 (position at 4.4 sec = 34.5 m)
Answer:
<em>The force is now 9 times the original force</em>
Explanation:
<u>Coulomb's Law
</u>
The electrostatic force between two charged particles is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
Coulomb's formula is:

Where:

q1, q2 = the particles' charge
d= The distance between the particles
Suppose the distance is reduced to d'=d/3, the new force F' is:




The force is now 9 times the original force