Answer:
2.63 x 10^18
Explanation:
A = 1 cm^2 = 1 x 10^-4 m^2
λ = 10,000 nm = 10,000 x 10^-9 m = 10^-5 m
T = 37 degree C = 37 + 273 = 310 k
Energy of each photon = h c / λ
where, h is the Plank's constant and c be the velocity of light
Energy of each photon = (6.63 x 10^-34 x 3 x 10^8) / 10^-5 = 1.989 x 10^-20 J
Energy radiated per unit time = σ A T^4
Where, σ is Stefan's constant
Energy radiated per unit time = 5.67 x 10^-8 x 10^-4 x 310^4 = 0.05236 J
Number of photons per second = Energy radiated per unit time / Energy of
each photon
Number of photons per second = 0.05236 / (1.989 x 10^-20) = 2.63 x 10^18
Answer:
The Statement is wrong because the reverse is the case as it is the kinetic energy that is being transformed to gravitational potential energy.
Explanation:
As your friend throws the baseball into the air the ball gains an initial velocity (u) and this makes the Kinetic energy to be equal to

Here m is the mass of the baseball
Now as this ball moves further upward the that velocity it gained reduce due to the gravitational force and this in turn reduces the kinetic energy of the ball and this kinetic energy lost is being converted to gravitational potential energy which is mathematically represented as (m×g×h)
as energy can not be destroyed but converted to a different form according to the first law of thermodynamics
Looking a the formula for gravitational potential energy we see that the higher the ball goes the grater the gravitational potential energy.
a. work is the time it takes to move an object once acted upon by a force
The frequency increasing makes the crests pass more quickly. Frequency is a count of how many times per second an event occurs. In waves, this event is the passing of an entire cycle. Once the cycle has passed, the wave repeats. The faster the wave repeats, the higher the frequency. For this reason, frequency has units of hertz, Hz. The unit of hertz is 1/s or "per second"