The pressure of a gas is the force that the gas exerts on the walls of its container. When you blow air into a balloon, the balloon expands because the pressure of air molecules is greater on the inside of the balloon than the outside. Pressure is a property which determines the direction in which mass flows.
The answer is A. planning a hiking trip
A topographical map would not help studying plant growth over time unless you are looking for a better altitude to plant said plants.
A topographical map would not help studying rainfall for one year unless your location was <em>really</em> so high or low that it affected your weather
And most of all, a topographical map would not be useful for planning a cuise across the Atlantic Ocean because the elevation of the sea is zero!
A topographical map <em>would</em> be useful for planning a hiking trip because there are many factors and details that a hike should have. Which includes height, distance, paths, and elevation.
This problem is providing the basic dissociation constant of ibuprofen (IB) as 5.20, its pH as 8.20 and is requiring the equilibrium concentration of the aforementioned drug by giving the chemical equation at equilibrium it takes place. The obtained result turned out to be D) 4.0 × 10−7 M, according to the following work:
First of all, we set up an equilibrium expression for the given chemical equation at equilibrium, in which water is omitted for it is liquid and just aqueous species are allowed to be included:
![Kb=\frac{[IBH^+][OH^-]}{[IB]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BIBH%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BIB%5D%7D)
Next, we calculate the concentration of hydroxide ions and the Kb due to the fact that both the pH and pKb were given:

![[OH^-]=10^{-5.8}=1.585x10^{-6}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-5.8%7D%3D1.585x10%5E%7B-6%7DM)

Then, since the concentration of these ions equal that of the conjugated acid of the ibuprofen (IBH⁺), we can plug in these and the Kb to obtain:
![6.31x10^{-6}=\frac{(1.585x10^{-6})(1.585x10^{-6})}{[IB]}](https://tex.z-dn.net/?f=6.31x10%5E%7B-6%7D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B%5BIB%5D%7D)
Finally, we solve for the equilibrium concentration of ibuprofen:
![[IB]=\frac{(1.585x10^{-6})(1.585x10^{-6})}{6.31x10^{-6}}=4.0x10^{-7}](https://tex.z-dn.net/?f=%5BIB%5D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B6.31x10%5E%7B-6%7D%7D%3D4.0x10%5E%7B-7%7D)
Learn more:
(Weak base equilibrium calculation) brainly.com/question/9426156
Answer:
D) N2O5
Explanation:
The molar mass of a substance is defined as the mass of this substance in 1 mol. To solve this question we must find the molar mass of each option:
<em>Molar mass NO:</em>
1N = 14g/mol*1
1O = 16g/mol*1
14+16 = 30g/mol
<em>Molar mass NO2:</em>
1N = 14g/mol*1
2O = 16g/mol*2
14+32 = 46g/mol
<em>Molar mass N2O:</em>
2N = 14g/mol*2
1O = 16g/mol*1
28+16 = 44g/mol
<em>Molar mass N2O5:</em>
2N = 14g/mol*2
5O = 16g/mol*5
28+80 = 108g/mol
That means the compound with the greatest mass is:
<h3>D) N2O5</h3>