Cations from smallest to largest
Li⁺ ,Na⁺, K⁺ (from Periodic Table, the bigger number of period, the bigger size, of atom, so the bigger size of cation)
1) LiF smaller cation then KF
1,036 <span>853
</span><span>The lattice energy increases as cations get smaller, as shown by LiF and KF.
</span><span>I think this one should be correct answer, because the compared substances have also the same anion, and we can compare cations in them.
2) The same cation Li , so wrong statement.
3)</span>The same cation Na , so wrong statement.
4) NaCl smaller cation then KF
786 853
Answer:
The molality of the glycerol solution is 2.960×10^-2 mol/kg
Explanation:
Number of moles of glycerol = Molarity × volume of solution = 2.950×10^-2 M × 1 L = 2.950×10^-2 moles
Mass of water = density × volume = 0.9982 g/mL × 998.7 mL = 996.90 g = 996.90/1000 = 0.9969 kg
Molality = number of moles of glycerol/mass of water in kg = 2.950×10^-2/0.9969 = 2.960×10^-2 mol/kg
Answer:
1255.4L
Explanation:
Given parameters:
P₁ = 928kpa
T₁ = 129°C
V₁ = 569L
P₂ = 319kpa
T₂ = 32°C
Unknown:
V₂ = ?
Solution:
The combined gas law application to this problem can help us solve it. It is mathematically expressed as;

P, V and T are pressure, volume and temperature
where 1 and 2 are initial and final states.
Now,
take the units to the appropriate ones;
kpa to atm, °C to K
P₂ = 319kpa in atm gives 3.15atm
P₁ = 928kpa gives 9.16atm
T₂ = 32°C gives 273 + 32 = 305K
T₁ = 129°C gives 129 + 273 = 402K
Input the values in the equation and solve for V₂;

V₂ = 1255.4L
Answer;
= 0.054 kg or 54 g
Explanation;
Using the equation; Q = mcΔT where Q is the quantity of heat transferred, m is the mass, c is specific heat of the substance, ΔT is delta T, the change in temperature.
ΔT = 75 - 20 = 55 C.
Solve the equation for m
m = Q/ cΔT
Mass = 12500 / (55 × 4200)
= 0.054 kg or 54 g
Answer 19.9g. I’ve took the test last week at my uncle randy’s house