Answer:
Part A
6/40 = 0.15
Part B
16/40 = 0.4
Part C
10/40 = 0.25
Part D
8/40 = 0.20
Part E
The relative frequency of drawing a five-dollar bill is higher than the other relative frequencies. So, I can predict that Pablo is most likely to have more five-dollar bills than any of the others.
Part F
The relative frequency of drawing a one-dollar bill is lower than the other relative frequencies. So, I can predict that Pablo is most likely to have fewer one-dollar bills than bills of any other denomination.
Part G
It would not be a surprise if Pablo had fewer twenties than ones. The experiment was conducted only 40 times, and the numbers of times one-, ten-, and twenty-dollar bills were drawn are not very far apart. So, the number of twenties could be more or less than the number of ones. The same goes for tens and ones.
If you're on Plato an on slide 20 this Answer is for you:
<em>If Pablo does an experiment 100 times, will the relative frequency be more accurate or less accurate than if he did the experiment 40 times? Why?</em>
Answer: As the number of trials increases, the relative frequency becomes closer to the probability of the event. So, the relative frequency would be more accurate if the experiment were repeated 100 times rather than 40 times.
Answer:
7 km
Step-by-step explanation:
Substitute:
The equation for area of a semi-circle is 
A = 
76.97 = 
Multiply by 2 on both sides:
2(76.97) = (
)2
153.94 = 
Divide by pi on both sides:
153.94 = 
/pi /pi
49.03 ≈ 
Find the square root:

7 = r
Subtract L from both sides.
the expression now becomes,
<span>S−L=−rL</span>
2)Divide by L on both sides.
<span><span><span>S−L</span>L</span>=−r</span>
3)Multiply with a negative sign on both sides in the final step to obtain the expression in terms of r so the answer is<span> #(L-S)/L = r#</span>
Answer:
it depends on how big her study is-
but ig it could be 5= 260 dollars
Step-by-step explanation: