1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
victus00 [196]
2 years ago
14

A rigid, insulated tank whose volume is 10 L is initially evacuated. A pinhole leak develops and air from the surroundings at 1

bar, 25 C enters the tank until the pressure in the tank becomes 1 bar (assume ideal gas model k=1.4 for the air). Find:
A) final temperature in tank.
B) amount of air that leaks into tank in grams.
C) amount of entropy produced in J/K.
Physics
1 answer:
balandron [24]2 years ago
5 0

Answer:

The answer is "143.74^{\circ} \ C , 8.36\ g, and \ 2.77\ \frac{K}{J}"

Explanation:

For point a:

Energy balance equation:

\frac{dU}{dt}= Q-Wm_ih_i-m_eh_e\\\\

W=0\\\\Q=0\\\\m_e=0

From the above equation:

\frac{dU}{dt}=0-0+m_ih_i-0\\\\\Delta U=\int^{2}_{1}m_ih_idt\\\\

because the rate of air entering the tank that is h_i constant.

\Delta U = h_i \int^{2}_{1} m_i dt \\\\= h_i(m_2 -m_1)\\\\m_2u_2-m_1u_2=h_i(M_2-m_1)\\\\

Since the tank was initially empty and the inlet is constant hence, m_2u-0=h_1(m_2-0)\\\\m_2u_2=h_1m_2\\\\u_2=h_1\\\\

Interpolate the enthalpy between T = 300 \ K \ and\ T=295\ K. The surrounding air  

temperature:

T_1= 25^{\circ}\ C\ (298.15 \ K)\\\\\frac{h_{300 \ K}-h_{295\ K}}{300-295}= \frac{h_{300 \ K}-h_{1}}{300-295.15}

Substituting the value from ideal gas:

\frac{300.19-295.17}{300-295}=\frac{300.19-h_{i}}{300-298.15}\\\\h_i= 298.332 \ \frac{kJ}{kg}\\\\Now,\\\\h_i=u_2\\\\u_2=h_i=298.33\ \frac{kJ}{kg}

Follow the ideal gas table.

The u_2= 298.33\ \frac{kJ}{kg} and between temperature T =410 \ K \ and\  T=240\ K.

Interpolate

\frac{420-410}{u_{240\ k} -u_{410\ k}}=\frac{420-T_2}{u_{420 k}-u_2}

Substitute values from the table.

 \frac{420-410}{300.69-293.43}=\frac{420-T_2}{{u_{420 k}-u_2}}\\\\T_2=416.74\ K\\\\=143.74^{\circ} \ C\\\\

For point b:

Consider the ideal gas equation.  therefore, p is pressure, V is the volume, m is mass of gas. \bar{R} \ is\  \frac{R}{M} (M is the molar mass of the  gas that is 28.97 \ \frac{kg}{mol} and R is gas constant), and T is the temperature.

n=\frac{pV}{TR}\\\\

=\frac{(1.01 \times 10^5 \ Pa) \times (10\ L) (\frac{10^{-3} \ m^3}{1\ L})}{(416.74 K) (\frac{8.314 \frac{J}{mol.k} }{2897\ \frac{kg}{mol})}}\\\\=8.36\ g\\\\

For point c:

 Entropy is given by the following formula:

\Delta S = mC_v \In \frac{T_2}{T_1}\\\\=0.00836 \ kg \times 1.005 \times 10^{3} \In (\frac{416.74\ K}{298.15\ K})\\\\=2.77 \ \frac{J}{K}

You might be interested in
A person has long hair hanging straight down from their head. A second person rubs a balloon with felt so that the balloon is ne
Vedmedyk [2.9K]

Answer:

<em>The best explanation is that the first person is grounded to the earth, and his/her body either draws up negative charges from the earth, or tend to conducts negative charges to the earth, depending on the charge on the balloon.</em>

Explanation:

The earth is an infinite store for charges. In the first case where the second person brings a negatively charged balloon towards the first person, the negative charges on the balloon induces the first person's body to tend to attract the negative charges on the balloon through the first person's body to the positive charges within the earth. In the second case when again a positively charged balloon is brought near the first person's hair, the positive charges on the balloon induce the first person's body into drawing up negative charges from within the earth. This charges, and their opposite induced charges, create an attractive force between the hair strands and the balloons.

4 0
3 years ago
The amount of pressure exerted by a solid is based on
Veronika [31]

Answer:

pressure= force/area

A solid resting on a horizontal surfaceexerts a normal contactforce equals to its weight. The pressure of the solid on the surface depends on the area of contact. (b) the area of contact between the two surfaces. The greater the force or the smaller the area the greater the pressure.

5 0
3 years ago
Read 2 more answers
When is a zero not significant?
maria [59]

Answer:

Not between significant digits.

Explanation:

A zero not significant when it's not between significant digits.

8 0
3 years ago
Read 2 more answers
Two forces of magnitude 8N and 4N act at right angle to each other. The angle between the resultant and the 8N force is?
Marta_Voda [28]

Answer:

Draw the vector triangle (head to tail)

Let 8 be adjacent and 4 the opposite side

tan theta = 4 / 8 = .5

theta = 26.6 deg

4 0
2 years ago
Change in speed over a given period of time is
Dvinal [7]

Explanation:

Acceleration is the change in speed over a given time period

8 0
3 years ago
Read 2 more answers
Other questions:
  • Use the table below to answer the following questions. Substance Specific Heat (J/g•°C) water 4.179 aluminum 0.900 copper 0.385
    15·1 answer
  • Two forces act on a 8.50-kg object. One of the forces is 14.0 N. If the object accelerates at 3.50 m/s2 , what is the greatest p
    15·1 answer
  • What makes a hypothesis testable
    6·2 answers
  • What is the magnitude of a volcanic eruption in krakatoa, indonesia august 27, 1883?
    8·1 answer
  • Find a unit vector normal to the plane containing Bold u equals 2 Bold i minus Bold j minus 3 Bold k and Bold v equals negative
    5·1 answer
  • A straightforward method of finding the density of an object is to measure its mass and then measure its volume by submerging it
    5·1 answer
  • Now assume that the frictional force f is not at its maximum value. What is the relation between the torque Ï„ applied to each w
    10·2 answers
  • When do the heavier elements finally form? Give a few example.
    12·1 answer
  • A 2.0 cm thick brass plate (k_r = 105 W/K-m) is sealed to a glass sheet (kg = 0.80 W/K m), and both have the same area. The expo
    11·1 answer
  • Voltage has been described as similar to the water in the water pipes in your home. What other analogy can you think of that is
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!