1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
victus00 [196]
3 years ago
14

A rigid, insulated tank whose volume is 10 L is initially evacuated. A pinhole leak develops and air from the surroundings at 1

bar, 25 C enters the tank until the pressure in the tank becomes 1 bar (assume ideal gas model k=1.4 for the air). Find:
A) final temperature in tank.
B) amount of air that leaks into tank in grams.
C) amount of entropy produced in J/K.
Physics
1 answer:
balandron [24]3 years ago
5 0

Answer:

The answer is "143.74^{\circ} \ C , 8.36\ g, and \ 2.77\ \frac{K}{J}"

Explanation:

For point a:

Energy balance equation:

\frac{dU}{dt}= Q-Wm_ih_i-m_eh_e\\\\

W=0\\\\Q=0\\\\m_e=0

From the above equation:

\frac{dU}{dt}=0-0+m_ih_i-0\\\\\Delta U=\int^{2}_{1}m_ih_idt\\\\

because the rate of air entering the tank that is h_i constant.

\Delta U = h_i \int^{2}_{1} m_i dt \\\\= h_i(m_2 -m_1)\\\\m_2u_2-m_1u_2=h_i(M_2-m_1)\\\\

Since the tank was initially empty and the inlet is constant hence, m_2u-0=h_1(m_2-0)\\\\m_2u_2=h_1m_2\\\\u_2=h_1\\\\

Interpolate the enthalpy between T = 300 \ K \ and\ T=295\ K. The surrounding air  

temperature:

T_1= 25^{\circ}\ C\ (298.15 \ K)\\\\\frac{h_{300 \ K}-h_{295\ K}}{300-295}= \frac{h_{300 \ K}-h_{1}}{300-295.15}

Substituting the value from ideal gas:

\frac{300.19-295.17}{300-295}=\frac{300.19-h_{i}}{300-298.15}\\\\h_i= 298.332 \ \frac{kJ}{kg}\\\\Now,\\\\h_i=u_2\\\\u_2=h_i=298.33\ \frac{kJ}{kg}

Follow the ideal gas table.

The u_2= 298.33\ \frac{kJ}{kg} and between temperature T =410 \ K \ and\  T=240\ K.

Interpolate

\frac{420-410}{u_{240\ k} -u_{410\ k}}=\frac{420-T_2}{u_{420 k}-u_2}

Substitute values from the table.

 \frac{420-410}{300.69-293.43}=\frac{420-T_2}{{u_{420 k}-u_2}}\\\\T_2=416.74\ K\\\\=143.74^{\circ} \ C\\\\

For point b:

Consider the ideal gas equation.  therefore, p is pressure, V is the volume, m is mass of gas. \bar{R} \ is\  \frac{R}{M} (M is the molar mass of the  gas that is 28.97 \ \frac{kg}{mol} and R is gas constant), and T is the temperature.

n=\frac{pV}{TR}\\\\

=\frac{(1.01 \times 10^5 \ Pa) \times (10\ L) (\frac{10^{-3} \ m^3}{1\ L})}{(416.74 K) (\frac{8.314 \frac{J}{mol.k} }{2897\ \frac{kg}{mol})}}\\\\=8.36\ g\\\\

For point c:

 Entropy is given by the following formula:

\Delta S = mC_v \In \frac{T_2}{T_1}\\\\=0.00836 \ kg \times 1.005 \times 10^{3} \In (\frac{416.74\ K}{298.15\ K})\\\\=2.77 \ \frac{J}{K}

You might be interested in
A disk of a radius 50 cm rotates at a constant rate of 100 rpm. What distance in meters will a point on the outside rim travel d
Dmitry [639]

Answer:

the distance in meters traveled by a point outside the rim is 157.1 m

Explanation:

Given;

radius of the disk, r = 50 cm = 0.5 m

angular speed of the disk, ω = 100 rpm

time of motion, t = 30 s

The distance in meters traveled by a point outside the rim is calculated as follows;

\theta = \omega t\\\\\theta = (100 \frac{rev}{\min}  \times \frac{2\pi \ rad}{1 \ rev} \times \frac{1\min}{60 s} ) \times (30 s)\\\\\theta = 100 \pi \ rad\\\\d = \theta r\\\\d = 100\pi  \ \times \ 0.5m\\\\d = 50 \pi \ m = 157.1 \ m

Therefore, the distance in meters traveled by a point outside the rim is 157.1 m

6 0
3 years ago
A 12 kg<br> mass is lifted to a height of 2 m. What is its potential energy<br> at this position?
Romashka-Z-Leto [24]

Answer:

Explanation:

Potential energy is the energy stored within an object, due to the object's position, arrangement or state

4 0
3 years ago
Read 2 more answers
The tension in the rope is constant and equal to 40 N as the block is pulled. What is the instantaneous power (in W) supplied by
Eduardwww [97]

Complete Question:

A 10 kg block is pulled across a horizontal surface by a rope that is oriented at 60° relative to the horizontal surface.

The tension in the rope is constant and equal to 40 N as the block is pulled. What is the instantaneous power (in W) supplied by the tension in the rope if the block when the block is 5 m away from its starting point? The coefficient of kinetic friction between the block and the floor is 0.2 and you may assume that the block starting at rest.

Answer:

Power = 54.07 W

Explanation:

Mass of the block = 10 kg

Angle made with the horizontal, θ = 60°

Distance covered, d = 5 m

Tension in the rope, T = 40 N

Coefficient of kinetic friction, \mu = 0.2

Let the Normal reaction = N

The weight of the block acting downwards = mg

The vertical resolution of the 40 N force, f_{y} = 40sin \theta

\sum f(y) = 0

N + 40 sin \theta - mg = 0\\N = -40sin60 + 10*9.81 = 0\\N = 63.46 N

\sum f(x) = 0

40 cos 60 - f_{r} - ma = 0\\ f_{r} = \mu N\\ f_{r} = 0.2 * 63.46\\ f_{r} = 12.69 N\\40cos 60 - 12.69-10a = 0\\7.31 = 10a\\a = 0.731 m/s^{2}

v^{2}  = u^{2} + 2as\\u = 0 m/s\\v^{2}  =  2 * 0.731 * 5\\v^{2}  = 7.31\\v = \sqrt{7.31} \\v = 2.704 m/s

Power, P = Fvcos \theta

P = 40 *2.704 cos60\\P = 54.074 W

7 0
3 years ago
How many earth years does it take mars to orbit the sun
Colt1911 [192]

This is a question that would have literally have taken two seconds to look up on google but the answer is 1.88 years.

4 0
3 years ago
PLS HELP
RoseWind [281]

Answer:

A and C are correct.

4 0
3 years ago
Read 2 more answers
Other questions:
  • Work is being done in which of these situations? All motions are at a constant velocity (including velocity = zero).
    15·2 answers
  • Find the dimension of volume​
    9·1 answer
  • Sug<br>. To repeat the experiment what is it?<br>​
    8·1 answer
  • What is the frequency of a radio wave with an energy of 3.686 × 10−24 j/photon?answer in units of hz?
    6·1 answer
  • All charged objects create an electric field around them. What two factors determine the strength of two electric fields upon th
    7·1 answer
  • A football is launched at 40 m/s, at an angle from the ground. What should the angle be such that maximum height of the trajecto
    15·1 answer
  • What option lists the types of electromagnetic waves in order of increasing wavelength?
    8·1 answer
  • Why can someone please help me out
    8·1 answer
  • Describe the difference between a transverse wave and longitudinal wave. Include the parts that you would find on a transverse w
    8·2 answers
  • The equation to calculate density is D = m/v. For a liquid substance, which item increases as heat is applied?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!