A force vector F1 points due
east and has a magnitude of 200 Newtons, A second force F2 is added to F1. The
resultant of the two vectors has a magnitude of 400 newtons and points along
the due east/west line. Find the magnitude and direction of F2. Note that there
are two answers.
<span>The given values are
F1 = 200 N</span>
F2 =?
Total = 400 N
Solution:
F1 + F2 = T
200 N + F2 = 400N
F2 = 400 - 200
F2 = 200
N
Answer:
Direction of ship: 9.45° West of North
Ship's relative speed: 7.87m/s
Explanation:
A. Direction of ship: since horizontal of the velocity of boat relative to the ground is 0
Vx=0
Therefore, -VsSin∅+VcCos∅40°
Sin∅ = Vc/Vs × Cos 40°
Sin∅ = 1.5/7 ×Cos40°
Sin∅= 0.164
∅= Sin-¹ (0.164)
∅= 9.45° W of N
B. Ship's relative speed:
Vy= VsCos∅ + Vcsin40°
= 7Cos9.45° + 1.5sin40°
= 7×0.986 + 1.5×0.642
= 7.865
= 7.87m/s
The best and most correct answer among the choices provided by the question is the first choice, larger.
Rankine is Fahrenheit + 460 , while Kelvin is Celsius + 273. We all know that Fahrenheit has larger number compared to kelvin , thus rankine is much larger.
Hope my answer would be a great help for you. If you have more questions feel free to ask here at Brainly.
Answer:
Acceleration will be equal to
Explanation:
We have given mass of the object m = 0.4 kg
Spring constant k = 8 N/m
Maximum displacement of the spring is given x = 0.1 m
From newton's law force is equal to
.....eqn 1
By hook's law spring force is equal to
.....eqn 2
From equation 1 and equation 2



So acceleration will be equal to 