1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SIZIF [17.4K]
3 years ago
5

1. An electron travels 4.82 meters in 0.00360 seconds. What is its average speed?

Physics
1 answer:
vredina [299]3 years ago
6 0

Answer:

speed =distance /time

speed =4.82/0.00360

speed =1338.8m/s

You might be interested in
Toowwy umy compiere semences,
andrew11 [14]
Idkbjkhfvhkl glgffkkrfkfkfk Goff
6 0
3 years ago
What is electrical power? how to measure power?
konstantin123 [22]

Answer:

Electric power is the rate at which work is done or energy is transformed in an electrical circuit.

P = W/t

Explanation

Where  P is Power,

             W is work

             t = Time passed

4 0
3 years ago
Two forces,
serg [7]

First compute the resultant force F:

\mathbf F_1=(5.90\,\mathbf i-5.60\,\mathbf j)\,\mathrm N

\mathbf F_2=(4.65\,\mathbf i-5.55\,\mathbf j)\,\mathrm N

\implies\mathbf F=\mathbf F_1+\mathbf F_2=(10.55\,\mathbf i-11.15\,\mathbf j)\,\mathrm N

Then use Newton's second law to determine the acceleration vector \mathbf a for the particle:

\mathbf F=m\mathbf a

(10.55\,\mathbf i-11.15\,\mathbf j)\,\mathrm N=(2.10\,\mathrm{kg})\mathbf a

\mathbf a\approx(5.02\,\mathbf i-5.31\,\mathbf j)\dfrac{\rm m}{\mathrm s^2}

Let \mathbf x(t) and \mathbf v(t) denote the particle's position and velocity vectors, respectively.

(a) Use the fundamental theorem of calculus. The particle starts at rest, so \mathbf v(0)=0. Then the particle's velocity vector at <em>t</em> = 10.4 s is

\mathbf v(10.4\,\mathrm s)=\mathbf v(0)+\displaystyle\int_0^{10}\mathbf a(u)\,\mathrm du

\mathbf v(10.4\,\mathrm s)=\left((5.02\,\mathbf i-5.31\,\mathbf j)u\,\dfrac{\rm m}{\mathrm s^2}\right)\bigg|_{u=0}^{u=10.4}

\mathbf v(10.4\,\mathrm s)\approx(52.2\,\mathbf i-55.2\,\mathbf j)\dfrac{\rm m}{\rm s}

If you don't know calculus, then just use the formula,

v_f=v_i+at

So, for instance, the velocity vector at <em>t</em> = 10.4 s has <em>x</em>-component

v_{f,x}=0+\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)(10.4\,\mathrm s)=52.2\dfrac{\rm m}{\mathrm s^2}

(b) Compute the angle \theta for \mathbf v(10.4\,\mathrm s):

\tan\theta=\dfrac{-55.2}{52.2}\implies\theta\approx-46.6^\circ

so that the particle is moving at an angle of about 313º counterclockwise from the positive <em>x</em> axis.

(c) We can find the velocity at any time <em>t</em> by generalizing the integral in part (a):

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\implies\mathbf v(t)=\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf i+\left(-5.31\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

Then using the fundamental theorem of calculus again, we have

\mathbf x(10.4\,\mathrm s)=\mathbf x(0)+\displaystyle\int_0^{10.4}\mathbf v(u)\,\mathrm du

where \mathbf x(0)=(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m is the particle's initial position. So we get

\mathbf x(10.4\,\mathrm s)=(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m+\displaystyle\int_0^{10.4}\left(\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf i+\left(-5.31\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\right)\,\mathrm du

\mathbf x(10.4\,\mathrm s)=(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m+\dfrac12\left(\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf i+\left(-5.31\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=10.4}

\mathbf x(10.4\,\mathrm s)\approx(542\,\mathbf i-570\,\mathbf j)\,\mathrm m

So over the first 10.4 s, the particle is displaced by the vector

\mathbf x(10.4\,\mathrm s)-\mathbf x(0)\approx(270\,\mathbf i-283\,\mathbf j)\,\mathrm m-(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m\approx(272\,\mathbf i-287\,\mathbf j)\,\mathrm m

or a net distance of about 395 m away from its starting position, in the same direction as found in part (b).

(d) See part (c).

3 0
3 years ago
A cork floats on the surface of an incompressible liquid in a container exposed to atmospheric pressure. The container is then s
yaroslaw [1]

Question:

A cork floats on the surface of an incompressible liquid in a container exposed to atmospheric pressure. The container is then sealed and the air above the liquid is evacuated. The cork:

A. sinks slightly  

B. rises slightly  

C. floats at the same height  

D. bobs up and down about its old position

Answer:

The correct answer is C)  floats at the same height  

Explanation:

The liquid is incompressible because its density very high and leaves no room for further compaction whether or not there is atmospheric pressure. So when you put a cork on the liquid, pressure or no pressure, there is no displacement hence it floats on the same height regardless of the absence of air.

Cheers!

6 0
3 years ago
Modern scientists use a version of the metric system called
ankoles [38]
<span>International System of Units (SI)</span>
8 0
3 years ago
Other questions:
  • Kirsin is learning about the outer planets what else would she know about a planet that is the second largest gas giant and has
    11·1 answer
  • Please help me!! &lt;3 <br> Am I right??
    11·1 answer
  • Ted throws an object straight up into the air with an initial velocity of 54 ft/s from a platform that is 40 ft above the ground
    9·1 answer
  • with what minimum speed must you toss a 160 g ball straight up to just touch the 13-m-high roof of the gymnasium if you release
    13·1 answer
  • A mechanic turns a wrench using a force of 27.00 N at a distance of 16.00 cm from the rotation axis. The force is perpendicular
    13·1 answer
  • In moving out of a dormitory at the end of the semester, a student does 1.82 x 104 J of work. In the process, his internal energ
    15·1 answer
  • Why are many scientists concerned about humans adding large amounts of carbon to the atmosphere by burning fossil fuels (combust
    5·2 answers
  • Help me please I’ll give brainliest
    15·1 answer
  • The atomic number is equal to the number of _________ in the atom.
    10·1 answer
  • A state government wants to increase the taxes on cigarettes to increase tax revenue. Because cigarettes are addictive, we would
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!