Answer:
This question is incomplete, the remaining part of the question is:
What is the control group, independent variable and dependent variable?
Control group: Plants placed in 80 degree rooms
Independent variable: Change in temperature
Dependent variable: Change in color of leaves
Explanation:
The independent variable in a scientific experiment is the variable that the experimenter controls or manipulates in order to bring about a change in the dependent variable. In this experiment, the variable manipulated by Justin B is the TEMPERATURE CHANGE.
On the other hand, a variable is said to be dependent if it is the variable that responds to a change made to the independent variable or rather it is the outcome. In this experiment, Justin B is trying to see the outcome on the color change in leaves when exposed to a low temperature, hence, COLOR CHANGE IN LEAVES is the dependent variable.
Control group of an experiment is the group that receives no experimental treatment. It is the group the experimenter considers normal and hence is comparing with his experimental group. In this experiment, Justin B believes the leaves change color in a low temperature, hence, he placed some plants in a lower temperature (60 degree) in order to compare them with when the plants are placed in a higher temperature (80 degree). As far as this experiment is concerned, the plants placed in 80 degrees temperature are believed by Justin B not to undergo color change, hence, they are the CONTROL GROUP while the group he placed in 60 degrees temperature are what he is interested in, making them the EXPERIMENTAL GROUP
Answer:
2.122×10^25atoms
Explanation:
number of moles=mass/molar mass
7.05moles= mass of pyridine/79
reacting mass of pyridine=556.95
C5H5N= (12×5)+(5)+(14)=79
C5=60
to find the mass of carbon in 556.95g of pyridine we take the stoichometric ratio
60[C5] -----> 79[C5H5N]
x[C5] --------> 556.95g[C5H5N]
cross multiply
x=(60×556.95)/79
x=423g of carbon
moles=mass/molar mass
moles of carbon=423/12
moles=35.25moles of carbon
moles=number of particles/Avogadro's constant
35.25=number of particles/6.02×10^23
number of particles=2.122×10^25atoms of carbon
Answer:
What is the name of the drug you were talking at the time of coming up with this theory please?
Answer:
ΔH° = -186.2 kJ
Explanation:
Hello,
This case in which the Hess method is applied to compute the required chemical reaction. Thus, we should arrange the given first two reactions as:
(1) it is changed as:
SnCl2(s) --> Sn(s) + Cl2(g)...... ΔH° = 325.1 kJ
That is why the enthalpy of reaction sign is inverted.
(2) remains the same:
Sn(s) + 2Cl2(g) --> SnCl4(l)......ΔH° = -511.3 kJ
Therefore, by adding them, we obtain the requested chemical reaction:
(3) SnCl2(s) + Cl2(g) --> SnCl4(l)
For which the enthalpy change is:
ΔH° = 325.1 kJ - 511.3 kJ
ΔH° = -186.2 kJ
Best regards.