Number of moles
Explanation:
From the general formula of ideal gas equation it is seen that number of moles is present and absent in other gas equations
Acids are ionic compounds that break apart in water to form a hydrogen ion. The strength of an acid is based on the concentration of hydrogen ions in a solution. The more hydrogen ions, the stronger the acid. Bases are ionic compounds that break apart in water to form negatively charged hydroxide ions. The strength of the base is based on the concentration of hydroxide ions.
Hence, letter C is the correct answer.
Answer:
28 g/mol, N2
Explanation:
Given data:
Volume of gas = 5.0 L
Mass of gas = 6.3 g
Pressure = 1 atm
Temperature = 273 K
Molar mass of gas = ?
Solution:
We will calculate the density first.
d = mass/ volume
d = 6.3 g/ 5.0 L
d = 1.26 g/L
Molar mass:
d = PM/RT
M = dRT/P
M = 1.26 g/L× 0.0821 atm.L/mol.K × 273 K/ 1 atm
M = 28 g/mol
Molar mass of N₂ is 28 g/mol thus given gas is N₂.
Answer: (22.98977 g Na/mol) + (1.007947 g H/mol) + (12.01078 g C/mol) + ((15.99943 g O/mol) x 3) = 84.0067 g NaHCO3/mol
9.
(1.20 g NaHCO3) / (84.0067 g NaHCO3/mol) = 0.0143 mol NaHCO3
10.
Supposing the question is asking about "how many moles" of CO2. And supposing the reaction to be something like:
NaHCO3 + H{+} = Na{+} + H2O + CO2
(0.0143 mol NaHCO3) x (1 mol CO2 / 1 mol NaHCO3) = 0.0143 mol CO2 in theory
11.
n = PV / RT = (1 atm) x (0.250 L) / ((0.0821 L atm/K mol) x (298 K)) = 0.0102 mol CO2
12.
(0.0143 mol - 0.0102 mol) / (0.0143 mol) = 0.287 = 28.7%
Explanation: