Answer:
x≤ -7 or x≥ -4
Step-by-step explanation:
There is a closed circle at -7 and the line goes to the left
x≤ -7
There is a closed circle at -4 and the line goes to the right
x≥ -4
Since they both can't be true at the same time it is an or
x≤ -7 or x≥ -4
Step-by-step explanation:
Answer:
![\left[\begin{array}{c}-\frac{8}{\sqrt{117} } \\\frac{7}{\sqrt{117} }\\\frac{2}{\sqrt{117} }\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7B8%7D%7B%5Csqrt%7B117%7D%20%7D%20%5C%5C%5Cfrac%7B7%7D%7B%5Csqrt%7B117%7D%20%7D%5C%5C%5Cfrac%7B2%7D%7B%5Csqrt%7B117%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
We are required to find a unit vector in the direction of:
![\left[\begin{array}{c}-8\\7\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-8%5C%5C7%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
Unit Vector, 
The Modulus of
=
Therefore, the unit vector of the matrix is given as:
![\left[\begin{array}{c}-\frac{8}{\sqrt{117} } \\\frac{7}{\sqrt{117} }\\\frac{2}{\sqrt{117} }\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7B8%7D%7B%5Csqrt%7B117%7D%20%7D%20%5C%5C%5Cfrac%7B7%7D%7B%5Csqrt%7B117%7D%20%7D%5C%5C%5Cfrac%7B2%7D%7B%5Csqrt%7B117%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
We can't eliminate as is so we have to change something up there in the equations to get either the x values the same number but opposite signs, or the y values the same number but opposite signs. I chose to change the y values to the same number but different signs. In the first equation y is -3y and in the second one, y is -8y. The LCM of both of those numbers is 24, so we will multiply the first equation by an 8 (8*3=24) and the second equation by 3 (3*8=24) but since they are both negative right now, one of those multiplications has to involve a negative because - * - = +. Set it up like this:
8(-10x - 3y = -18)
-3(-7x - 8y = 11)
Multiply both of those all the way through to get new equations:
-80x - 24y = -144
21x +24y = -33
Now the y's cancel each other out leaving only the x's:
-59x = -177 and x = 3. Now plug that 3 into either one of the original equations to find the y value. Either equation will work; you'll get the same answer using either one. Promise. -7(3) - 8y = 11 gives a y value of -4. so your solution is (3, -4) or B above.
Answer:
2+n/5
Step-by-step explanation:
sum=plus
quotient=divide
number=n