Sound waves in air are a series of <span>periodic disturbances, </span><span>periodic condensations and rarefactions,</span><span> and high- and low-pressure regions. It is all of the above. The answer is letter D.</span>
Answer: force of gravity on the body due to height difference above the earth's surface
Explanation: as you increase the height of a body above ground, you do work against gravity in moving it from a point on the earth's surface to that point. So a body falling has a stored up gravito-potential energy which acts on it downward due to its mass, accelerating it downwards
Answer b): kinetic energy of the body
Explanation: the downward force produces an acceleration of magnitude 9.81m/s2 downwards which means an increasing velocity. This increasing velocity means the kinetic energy of the body is increasing (kinetic energy is proportional to velocity of the body squared)
Definitely not A or B. It really depends on the size of the boulder... It should be kilograms, unless it's a extremely huge boulder.
1) Try to head into the waves at some slight angle and the speed of the boat should be reduced.
2) In order to ride up and over the waves, the speed of the boat should be slow.
3) The less the speed of the boat, and the less strain will be put on the hull and superstructure.
You can eliminate the answer A because the moon is super cold
For answer B, atmosphere is contained of gasses, not just oxygen alone
Definitely not C
The answer is D because the moon's gravity isn't strong enough to hold the gasses, as a result, only a small amount of gasses has an attraction to it ( the moon has a little atmosphere though) but not enough to be considered