Answer:
constant volicty of the pumper when they hit ground 7.03-/s
1. Earth's moon has no atmosphere because the moon's gravity is too weak to hold onto gas molecules.
2. On the moon, maria are low flat plains. The word maria comes from the Latin word mare, which means sea.
Answer:
The velocity of the particle from T = 0 s to T = 4 s is;
0.5 m/s
Explanation:
The given parameters from the graph are;
The initial displacement (covered) at time, t₁ = 0 s is x₁ = 1 m
The displacement covered at time, t₂ = 4 s is x₂ = 3 m
The graph of distance to time, from time t = 0 to time t = 4 is a straight line graph, with the velocity given by the rate of change of the displacement to the time which is dx/dt which is also the slope of the graph given as follows;


The velocity of the particle from t = 0 s to t = 4 s = 1/2 m/s = 0.5 m/s.
Answer:
The chunk went as high as
2.32m above the valley floor
Explanation:
This type of collision between both ice is an example of inelastic collision, kinetic energy is conserved after the ice stuck together.
Applying the principle of energy conservation for the two ice we have based on the scenery
Momentum before impact = momentum after impact
M1U1+M2U2=(M1+M2)V
Given data
Mass of ice 1 M1= 5.20kg
Mass of ice 2 M2= 5.20kg
velocity of ice 1 before impact U1= 13.5 m/s
velocity of ice 2 before impact U2= 0m/s
Velocity of both ice after impact V=?
Inputting our data into the energy conservation formula to solve for V
5.2*13.5+5.2*0=(10.4)V
70.2+0=10.4V
V=70.2/10.4
V=6.75m/s
Therefore the common velocity of both ice is 6.75m/s
Now after impact the chunk slide up a hill to solve for the height it climbs
Let us use the equation of motion
v²=u²-2gh
The negative sign indicates that the chunk moved against gravity
And assuming g=9.81m/s
Initial velocity of the chunk u=0m/s
Substituting we have
6.75²= 0²-2*9.81*h
45.56=19.62h
h=45.56/19.62
h=2.32m
It takes 392 joules of work to lift it.
It has 392 joules of gravitational potential energy up there.