Answer:
Magnitude of the force is 2601.9 N
Explanation:
m = 450 kg
coefficient of static friction μs = 0.73
coefficient of kinetic friction is μk = 0.59
The force required to start crate moving is
.
but once crate starts moving the force of friction is reduced
.
Hence to keep crate moving at constant velocity we have to reduce the force pushing crate ie
.
Then the above pushing force will equal the frictional force due to kinetic friction and constant velocity is possible as forces are balanced.
Magnitude of the force

m = 43.2 kg
Explanation:
volume of sphere = (4/3)pi(r)^3
= (4/3)(3.14)(2 m)^3
= 33.5 m^3
density = mass/volume
or solving for mass m,
m = (density)×(volume)
= (1.29 kg/m^3)(33.5 m^3)
= 43.2 kg
Answer:
The ball fell 275.625 meters after 7.5 seconds
Explanation:
<u>Free fall
</u>
If an object is left on free air (no friction), it describes an accelerated motion in the vertical direction, powered exclusively by the acceleration of gravity. The formulas needed to compute the different magnitudes involved are


Where
is the final speed of the object in free fall, assumed positive downwards, t is the time elapsed since the release and y is the vertical distance traveled by the object
The ball was dropped from a cliff. We need to calculate the vertical distance the ball went down in t=7.5 seconds. We'll use the formula


ELECTROSTATIC:
relating to stationary electric charges or fields as opposed to electric currents.
NEUTRAL:
nor negative nor positive/having no charge
POSITIVELY CHARGED:
positive charge occurs when the number of protons exceeds the number of electrons
NEGATIVELY CHARGED:
negative charge occurs when the number of electrons exceeds the number of protons.
COULOMB:
SI unit for electric charge. One coulomb is equal to the amount of charge from a current of one ampere flowing for one second.
MICROCOULOMB:
a unit of electrical charge equal to one millionth of a coulomb.
NANOCOULOMB:
Nanocoulombs are a unit of charge 1,000,000,000 times smaller than Coulomb.
CONSERVATION OF CHARGE:
constancy of the total electric charge in the universe or in any specific chemical or nuclear reaction
QUANTISATION OF CHARGE:
Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge.
Yes it is possible. Spectrum of emitted light depends upon the chemical composition of the source. and the way of its excitation. a clear example to us is that of sun.