Answer:
49.3 N
Explanation:
Given that Pulling up on a rope, you lift a 4.25 kg bucket of water from a well with an acceleration of 1.80 m/s2 . What is the tension in the rope?
The weight of the bucket of water = mg.
Weight = 4.25 × 9.8
Weight = 41.65 N
The tension and the weight will be opposite in direction.
Total force = ma
T - mg = ma
Make tension T the subject of formula
T = ma + mg
T = m ( a + g )
Substitutes all the parameters into the formula
T = 4.25 ( 1.8 + 9.8 )
T = 4.25 ( 11.6 )
T = 49.3 N
Therefore, the tension in the rope is 49.3 N approximately.
<span> B. The temperature is not rising because the heat is being used to break the connections between the molecules </span>
Answer:
The center of mass of the two-ball system is 7.05 m above ground.
Explanation:
<u>Motion of 0.50 kg ball:</u>
Initial speed, u = 0 m/s
Time = 2 s
Acceleration = 9.81 m/s²
Initial height = 25 m
Substituting in equation s = ut + 0.5 at²
s = 0 x 2 + 0.5 x 9.81 x 2² = 19.62 m
Height above ground = 25 - 19.62 = 5.38 m
<u>Motion of 0.25 kg ball:</u>
Initial speed, u = 15 m/s
Time = 2 s
Acceleration = -9.81 m/s²
Substituting in equation s = ut + 0.5 at²
s = 15 x 2 - 0.5 x 9.81 x 2² = 10.38 m
Height above ground = 10.38 m
We have equation for center of gravity

m₁ = 0.50 kg
x₁ = 5.38 m
m₂ = 0.25 kg
x₂ = 10.38 m
Substituting

The center of mass of the two-ball system is 7.05 m above ground.
Yes! you are :) bc you are FORCING the page to turn, and the broom ti sweep
Answer:
The right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²
Explanation:
Thickness of the wall is L= 20cm = 0.2m
Thermal conductivity of the wall is K = 2.79 W/m·K
Temperature at the left side surface is T₁ = 50°C
Temperature of the air is T = 22°C
Convection heat transfer coefficient is h = 15 W/m2·K
Heat conduction process through wall is equal to the heat convection process so

Expression for the heat conduction process is

Expression for the heat convection process is

Substitute the expressions of conduction and convection in equation above


Substitute the values in above equation

Now heat flux through the wall can be calculated as

Thus, the right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²