According to the Law of Conservation of Energy, energy is neither created nor destroyed. They are just transferred from one system to another. To obey this law, the energy of the substances inside the container must be equal to the substance added to it. The energy is in the form of heat. There can be two types of heat energy: latent heat and sensible heat. Sensible heat is energy added or removed when a substance changes in temperature. Latent heat is the energy added or removed at a constant temperature during a phase change. Since there is no mention of phase change, we assume the heat involved here is sensible heat. The equation for sensible heat is:
H = mCpΔT
where
m is the mass of the substance
Cp is the specific heat of a certain type of material or substance
ΔT is the change in temperature.
So the law of conservation of heat tells that:
Sensible heat of Z + Sensible heat of container = Sensible heat of X
Since we have no idea what these substances are, there is no way of knowing the Cp. We can't proceed with the calculations. So, we can only assume that in the duration of 15 minutes, the whole system achieves equilibrium. Therefore, the equilibrium temperature of the system is equal to 32°C. The answer is C.
My calculations state, not rounding, the mass is 1.8
Answer:
in the direction of motion of Jacob
Explanation:
Given:
mass of Jacob, 
velocity of Jacob, 
mass of Ethan, 
velocity of Ethan, 
Now using the conservation of linear momentum for the case:
(When the two masses in motion combine to form one after the collision then they will move together in the direction of the greater momentum.)


in the direction of motion of Jacob as it was assumed to be positive.
<span>a) 1960 m
b) 960 m
Assumptions.
1. Ignore air resistance.
2. Gravity is 9.80 m/s^2
For the situation where the balloon was stationary, the equation for the distance the bottle fell is
d = 1/2 AT^2
d = 1/2 9.80 m/s^2 (20s)^2
d = 4.9 m/s^2 * 400 s^2
d = 4.9 * 400 m
d = 1960 m
For situation b, the equation is quite similar except we need to account for the initial velocity of the bottle. We can either assume that the acceleration for gravity is negative, or that the initial velocity is negative. We just need to make certain that the two effects (falling due to acceleration from gravity) and (climbing due to initial acceleration) counteract each other. So the formula becomes
d = 1/2 9.80 m/s^2 (20s)^2 - 50 m/s * T
d = 1/2 9.80 m/s^2 (20s)^2 - 50m/s *20s
d = 4.9 m/s^2 * 400 s^2 - 1000 m
d = 4.9 * 400 m - 1000 m
d = 1960 m - 1000 m
d = 960 m</span>