Tungsten has the highest tensile strength of any natural metal, but it's brittle and tends to shatter on impact.
Titanium has a tensile strength of 63,000 PSI. ...
Chromium, on the Mohs scale for hardness, is the hardest metal around.
Answer:
Wave X has a shorter wavelength.
Explanation:
The relation between the speed of a wave, its wavelength and frequency is given by :

It can be seen that the relationship between the frequency and wavelength is inverse.
In this problem, it is mentioned that two sound waves (wave X and wave Y) are moving through a medium at the same speed. The frequency of wave X is greater than wave Y. Then it would mean that wave X have shorter wavelength than wave Y (due to inverse relation).
Answer:
0.009 N, repulsive
Explanation:
The electrostatic force between two electric charges is given by:

where
k is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
In this problem, we have
are the two charges
r = 4.5 m is their separation
Substituting into the equation, we find

Moreover, the force is repulsive. In fact, the following rules apply:
- When two charges have same sign, they repel each other
- When two charges have opposite signs, they attract each other
The correct answer is y=-2x+(1/2)
y = f'(x)· x + c
Y = -2x + C
1 = -2x π/4 + C
=) C = I + π/2
y=-2x+(1/2) is the first-degree polynomial.
First-degree polynomials are the simplest polynomials. Here, we'll talk about a few qualities and connect the terms polynomial, function, and equation. Write a polynomial equation in standard form before attempting to solve it. Factor it, then set each variable factor to zero after it has reached zero. The original equations' answers are the solutions to the derived equations. Factoring cannot always be used to solve polynomial equations. For instance, the polynomial 2x+5 has an exponent of 1. The most typical kinds of polynomials used in algebra and precalculus are zero polynomial functions.
Learn more about polynomial functions here :-
brainly.com/question/22592200
#SPJ4