Linear momentum (mass x speed) has to be conserved.
-- Momentum before the jump:
(boy's mass) x (boy's speed) = (25 kg) x (4.0 m/s) = 100 kg-m/s
(cart's mass) x (cart's speed) = (15 kg) x (zero) = zero
Total momentum before the jump: (100 kg-m/s) + (zero) = (100 kg-m/s)
-- Momentum after the jump:
(mass of boy+cart) x (speed of boy+cart) = (40 kg) x (speed)
-- Momentum after the jump = momentum before the jump
(40 kg) x (speed) = 100 kg-m/s
Divide each side by 40 kg:
Speed = (100 kg-m/s) / (40 kg)
<em>Speed = 2.5 m/s</em> (d)
Julianne’s displacement from her origin is equal to 10.015 kilometers.
<u>Given the following data:</u>
- Distance B = 8.5 km, Northeast.
To calculate Julianne’s displacement from her origin:
<h3>How to calculate displacement.</h3>
We would denote the two (2) unit vectors along the East and Northeast directions by i and j respectively.
<u>Note:</u> Northeast is at angle of 45° with the East.
In terms of vectors, the distances becomes:
Distance A = 2i
![Distance\;B=8.5 [(cos 45i + sin 45j)]\\\\Distance\;B=(\frac{8.5}{\sqrt{2} } i \;+\;\frac{8.5}{\sqrt{2} } j)](https://tex.z-dn.net/?f=Distance%5C%3BB%3D8.5%20%5B%28cos%2045i%20%2B%20sin%2045j%29%5D%5C%5C%5C%5CDistance%5C%3BB%3D%28%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20i%20%5C%3B%2B%5C%3B%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20j%29)
<u>For the </u><u>resultant displacement</u><u>:</u>

D = 10.015 kilometers.
Read more on displacement here: brainly.com/question/13416288
Answer:
Height, mass, acceleration.
Explanation:
I hope it helps u dear! ^_^
The vibration caused by p waves is a volume changes, alternatimg from compression to expansión in the direction that the waves is traveling.