Answer:
24.5%
Explanation:
You just add up the atomic masses.
Ca - 40.078
Cl2 - 35.4527 x 2 = 70.9054
------ 110.9834
H4 - 1.00794 x 4 = 4.03176
O2 - 31.9998
------ 36.03056
TOTAL - 147.01396
So the water is 36.03056/147.01396 = .245082576 but that is only accurate to three decimals (because the mass of Ca was only given to three decimals) so we write .245 and that is 24.5%
This is not my answer but I found it on Yahoo answers and it was answered by Anonymous.
Explanation:
The intensity of electric field from a certain point that is assumed is proportional inversely to the square of distance’s magnitude from source. As one can see the electric field intensity is proportional inversely. Then the increase in magnitude of the space between source charge the electric field intensity decreases.
Since the proportionality is to square of distance, hence change or increase in distance is squared and that many times intensity of electric field decreases. So relation between them is inverse proportionality.
C because a compound is a substance made of at least two atoms bonded together
Answer:
Explanation:
Given parameters:
pH = 3.50
Unknown:
concentration of [H₃0⁺] = ?
concentration of [OH⁻] = ?
Solution:
In order to find the unknown, we use some simple expressions which best explains the pH scale and the equilibrium systems of aqueous solutions.
pH = -log₁₀[H₃O⁺]
[H₃O⁺] = inverse log₁₀ (-pH) =
= 
[H₃O⁺] = 3.2 x 10⁻⁴moldm⁻³
For the [OH⁻]:
we use : pOH = -log₁₀ [OH⁻]
Recall: pOH + pH = 14
pOH = 14 - pH = 14 - 3.5 = 10.5
Now we plug the value of pOH into pOH = -log₁₀ [OH⁻]
[OH⁻] = 
[OH⁻] =
= 3.2 x 10⁻¹¹moldm⁻³
The solution is acidic as the concentration of H₃0⁺ is more than that of the OH⁻ ions.