There is a bout 7 grams of protein in 1 ounce of meat, so 7*70=
Boiling-point is the point of a pure liquid matter starts to evaporate and change into gaseous phase. It is where the set of conditions such as the pressure and temperature enough to do so. Boiling-point elevation, on the other hand, is the phenomenon of which the boiling point of a pure liquid matter is elevated because of the dissolved substances. A great example would be the boiling point of a distilled water (pure water) which is lesser than the boiling point of a sea water because of the dissolved salts. A pure water boils at 100°C at atmospheric pressure while a salt water boils at higher temperature than 100°C at the same pressure. Thus, the answer is D.
– liquids, solids or gases – are made up of atoms and molecules that are in constant motion.<span> The theory also states that collisions between atoms and molecules are elastic</span>
Answer:

Explanation:
Hello,
In this case, since the density is defined as the ratio between the mass and the volume as shown below:

We can compute the density of water for the given 43 g that occupy the volume of 43 mL:

Regards.
Answer:
a) The equilibrium will shift in the right direction.
b) The new equilibrium concentrations after reestablishment of the equilibrium :
![[SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M](https://tex.z-dn.net/?f=%5BSbCl_5%5D%3D%280.370-x%29%20M%3D%280.370-0.0233%29%20M%3D0.3467%20M)
![[SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BSbCl_3%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
![[Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
Explanation:

a) Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
On increase in amount of reactant

If the reactant is increased, according to the Le-Chatlier's principle, the equilibrium will shift in the direction where more product formation is taking place. As the number of moles of
is increasing .So, the equilibrium will shift in the right direction.
b)

Concentration of
= 0.195 M
Concentration of
= 
Concentration of
= 
On adding more
to 0.370 M at equilibrium :

Initially
0.370 M
At equilibrium:
(0.370-x)M
The equilibrium constant of the reaction = 

The equilibrium expression is given as:
![K_c=\frac{[SbCl_3][Cl_2]}{[SbCl_5]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BSbCl_3%5D%5BCl_2%5D%7D%7B%5BSbCl_5%5D%7D)

On solving for x:
x = 0.0233 M
The new equilibrium concentrations after reestablishment of the equilibrium :
![[SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M](https://tex.z-dn.net/?f=%5BSbCl_5%5D%3D%280.370-x%29%20M%3D%280.370-0.0233%29%20M%3D0.3467%20M)
![[SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BSbCl_3%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
![[Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)