Answer: a) degree and sign
b) end behavior: left side → +∞, right side → -∞
c) x-intercepts: x = -1.3, 0.3, 1.0
<u>Step-by-step explanation:</u>
end behavior can be determined by two things:
1) the degree of the polynomial:
- if the degree is an even number, then the end behavior will be the same for both the left and right sides.
- if the degree is an odd number, then the end behavior will be different for both the left and right sides.
2) the sign of the leading coefficient:
- If the leading coefficient is positive, then the end behavior of the right side goes to positive infinity
- If the leading coefficient is negative, then the end behavior of the right side goes to negative infinity
W(x) = -5x³ + 7x - 2
Degree: 3 (odd)
Leading Coefficient: negative
So, end behavior is: right side goes to negative infinity, right side goes to positive infinity.
See attachment for x-intercepts. <em>I set the x-axis to represent tenths </em>
<h3>Answer:</h3>
x/tan(x) is an even function
sec(x)/x is an odd function
<h3>Explanation:</h3>
<em>x/tan(x)</em>
For f(x) = x/tan(x), consider f(-x).
... f(-x) = -x/tan(-x)
Now, we know that tan(x) is an odd function, so tan(-x) = -tan(x). Using this, we have ...
... f(-x) = -x/(-tan(x)) = x/tan(x) = f(x)
The relation f(-x) = f(x) is characteristic of an even function, one that is symmetrical about the y-axis.
_____
<em>sec(x)/x</em>
For g(x) = sec(x)/x, consider g(-x).
... g(-x) = sec(-x)/(-x)
Now, we know that sec(x) is an even function, so sec(-x) = sec(x). Using this, we have ...
... g(-x) = sec(x)/(-x) = -sec(x)/x = -g(x)
The relation g(-x) = -g(x) is characeristic of an odd function, one that is symmetrical about the origin.
2 = 2(-3) + 8
2 = -6 + 8
2 = 2
true.
2 = 3 + 1
2 = 4
false.
this is not a solution because both equations have to be true.