Answer:
Inductance as calculated is 13.12 mH
Solution:
As per the question:
Length of the coil, l = 12 cm = 0.12 m
Diameter, d = 1.7 cm = 0.017 m
No. of turns, N = 235
Now,
Area of cross-section of the wire, A = 
We know that the inductance of the coil is given by the formula:

Answer:b) atoms
Explanation:which are in turn made up of protons, neutrons and electrons
Answer:
Electric current is defined as the rate of flow of electric charge in a circuit from point one point to another. This is carried by electrically charged particles within the circuit. Current is represented by the symbol I and its unit measured in Amperes. It is therefore related to the voltage and resistance of the circuit. If the current in the circuit reduces, the rate at which the charge and current on the capacitor reduces also proportionally in an exponential manner.
Explanation:
Since a decrease in the flow of current in the circuit is observed, the implication for the rate at which the charge and voltage on the capacitor is also an exponential decrease in the rate of flow with time. This is because the electric current is directly proportional to the electric charge and the time.
Answer:
B. x - t graph
Explanation:
A position-time (x-t) graph is a graph of the position of an object against (versus) time.
Generally, the slope of the line of a position-time (x-t) graph is typically used to determine or calculate the velocity of an object.
An instantaneous velocity can be defined as the rate of change in position of an object in motion for a short-specified interval of time. Thus, an instantaneous velocity is a quantity that can be found by measuring the slope of a line that is tangent to a point on the graph.
Hence, the x - t graph also referred to as the position-time graph is used for determining the instantaneous velocity from the slope.
<u>For example;</u>
Given that the equation of motion is S(t) = 4t² + 2t + 10. Find the instantaneous velocity at t = 5 seconds.
Solution.
Differentiating the equation, we have;
Substituting the value of "t" into the equation, we have;
S(5) = 42 m/s.