The tropical rain forest is located mostly on Islands. Mainly found in Africa.
This question is in complete.The question is
A coin with a diameter 3.00 cm rolls up a 30.0° inclined plane. The coin starts out with an initial angular speed of 60.0 rad/s and rolls in a straight line without slipping. If the moment of inertia of the coin is(1/2) MR² , how far will the coin roll up the inclined plane (length along the ramp)? Hint: Conservation of mechanical energy.
Answer:
distance=0.124 m
Explanation:
Answer:
Jet stream would be displaced southwards causing heavy rain and flooding.
Explanation:
The other options of the question were A) Jet stream would be displaced northwards causing drought. B) Jet stream would be displaced southwards causing drought. D) Jet stream would be displaced northwards causing heavy rain and flooding,
The statement that is a likely impact of stronger than normal trade winds in the Pacific Northwest to the United States is "Jet stream would be displaced southwards causing heavy rain and flooding."
We are talking about climate or weather terminology. In this case, we are referring to the "El Niño" (the Children) effect. Its presence affects the weather in North America. This phenomenon combines with the "La Niña) effect and it presents itself every two to seven years, ad they last from 8 to 12 months, affecting the weather conditions of the region.
Answer:
c Like/same signs
Explanation:
A repelling force occurs between two or more charged objects with the charges are of like or same sign.
- According to Coulombs law, like charges repel on another, unlike charges attracts on another.
- If a positive charge comes into the vicinity of another positive charge, there will be repulsion.
- When oppositely charge species are brought near each other, there is an attraction.
Therefore, repulsion occurs when like charges are brought close to each other.
Answer:
4.71 eV
Explanation:
For an electromagnetic wave with wavelength
the energy of the photons in the wave is given by
where h is the Planck constant and c the speed of light. Therefore, this is the minimum energy that a photon should have in order to extract a photoelectron from the copper surface.
The work function of a metal is the minimum energy required by the incident light in order to extract photoelectrons from the metal's surface. Therefore, the work function corresponds to the energy we found previously. By converting it into electronvolts, we find: