<span>3598 seconds
The orbital period of a satellite is
u=GM
p = sqrt((4*pi/u)*a^3)
Where
p = period
u = standard gravitational parameter which is GM (gravitational constant multiplied by planet mass). This is a much better figure to use than GM because we know u to a higher level of precision than we know either G or M. After all, we can calculate it from observations of satellites. To illustrate the difference, we know GM for Mars to within 7 significant figures. However, we only know G to within 4 digits.
a = semi-major axis of orbit.
Since we haven't been given u, but instead have been given the much more inferior value of M, let's calculate u from the gravitational constant and M. So
u = 6.674x10^-11 m^3/(kg s^2) * 6.485x10^23 kg = 4.3281x10^13 m^3/s^2
The semi-major axis of the orbit is the altitude of the satellite plus the radius of the planet. So
150000 m + 3.396x10^6 m = 3.546x10^6 m
Substitute the known values into the equation for the period. So
p = sqrt((4 * pi / u) * a^3)
p = sqrt((4 * 3.14159 / 4.3281x10^13 m^3/s^2) * (3.546x10^6 m)^3)
p = sqrt((12.56636 / 4.3281x10^13 m^3/s^2) * 4.458782x10^19 m^3)
p = sqrt(2.9034357x10^-13 s^2/m^3 * 4.458782x10^19 m^3)
p = sqrt(1.2945785x10^7 s^2)
p = 3598.025212 s
Rounding to 4 significant figures, gives us 3598 seconds.</span>
Answer:
<em>The average speed is 22.2 km/h</em>
Explanation:
<u>Average Speed</u>
Given an object travels a total distance d and took a total time t, then the average speed is:

The mailman first drives d1=7 km at v1=15 km/h. The time taken to drive is:

Then he drives d2=7 km at v2=43 km/h taking a time of:

The total time is
t=0.467 h + 0.163 h = 0.63 h
The total distance is
d = 7 km + 7 km = 14 km
The average speed is:

The average speed is 22.2 km/h
Answer:
Yes
Explanation:
There is a position that works better than this and that is switching the sides of the forks.
The answer would be D. <span>The tortoise moved at a constant velocity throughout the race; the hare stopped to rest periodically.
Hope this helped. Good luck!</span>
Coastal climates mostly have to do with ocean currents, Imagine ocean currents like a river. Its contently moving around. In areas like Antarctica it transports the cold water which also carries cold air to the places where its current reaches. And in hot places like Florida it transports the hot water as well as the hot air around. This is why places around the equators ocean line is hot because it transports the hot air around by the currents. Please thanks if this helps!