1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zloy xaker [14]
2 years ago
12

Which of the following would illustrate a quadratic relation between the dependent and independent variables when graphed?

Physics
1 answer:
Kitty [74]2 years ago
3 0

Answer: option A. a graph of the area of a circle vs. its radius r (A = πr²).



Explanation:



A quadratic relation between the dependent and independent variables shows the independent variable raised to the power of 2.



This is it is a polynomial with general form ax² + bx + c, whewre a, b, and c, named coeficients,  are constants.



The function is y =  ax² + bx + c, where x is the independent variable and y is the dependent variable.



As stated in the question, the area of a circle is given by A = πr².



In this case, A is the dependent variable and r is the independent variable.



π is assumed as the coefficient of the quadratic term, and the other coefficients are assumed 0, since there are no either terms on r or constants.



The equation a = 1/b  is an inverse relation, not a quadratic relation.



The relation of distance vs. time for a car moving at constant speed is a linear relation of the kind v = u + st.



The mass of water vs. the volume of water in a drinking glass is a direct relation, mass = density × volume



Therefore, the only quadratic relation is shown by  a graph of the area of a circle vs. its radius r.

You might be interested in
Which action can be explained by physics?
steposvetlana [31]

Answer:

Actions that underlie mathematical rules, patterns or probability distributions.

For example how fast something falls at any given point or time.

More complex actions, such as human decision making in single individuals would be way too complicated to describe in physical terms.

But note that there can be physical models of such things as traffic when we can assume statistical knowledge of behavior.

Also physical models are used to plan such things as emergency exits in big stadiums, because many thousands of people can be described as particles flowing under a given pressure.

Every time we can gain good statistical knowledge and can therefore see patterns and rules in action, we can build theoretical models to make predictions and simulations (and games btw)

Since it's fair to say that mathematics is the science of patterns, it is plausible that physical descriptions often come in mathematical formulations, so that it can be understand as an efficient language of physics.

Neighboring disciplines like chemistry relay on physical theories to build on them,and then add shortcuts to fit their needs and interests, generating an own language for their field of study. But physicists may refer to them as anadd-on to physics.

Physics can basically explain all actions wich you can express in numbers.

But note that on a fundamental level physics describes 'how' things work, not necessarily 'why' they do it this way. The source of the basic and most fundamental physical constants and rules remains a mystery till this day.But of course there are theories on that as well, wich mostly can neither be proved or falsified.

The text is my own work and based of my general knowledge and quintessence of lectures on physics and other fields I attended.

(I would really appreciate the brainliest)

3 0
2 years ago
The Gulf Stream off the east coast of the United States can flow at a rapid 3.9 m/s to the north. A ship in this current has a c
Alex Ar [27]

Answer:

72.54 degree west of south

Explanation:

flow = 3.9 m/s north

speed = 11 m/s

to find out

point due west from the current position

solution

we know here water is flowing north and ship must go south at an equal rate so that the velocities cancel and the ship just goes west

so it become like triangle with 3.3 point down and the hypotenuse is 11

so by triangle

hypotenuse ×cos(angle) = adjacent side

11 ×cos(angle) = 3.3

cos(angle) = 0.3

angle = 72.54 degree west of south

3 0
3 years ago
Read 2 more answers
In an electrostatic field, path 1 between points A and B is twice as long as path 2. The electrostatic work done on a negatively
Elanso [62]

Answer:

W2 = W1

Explanation:

work is independent of the path taken between the points.

8 0
2 years ago
A simple and common technique for accelerating electrons is shown in the figure, where there is a uniform electric field between
Sunny_sXe [5.5K]

Answer : 4.483\times 10^{15}\ m/s^2.

Explanation:

It is given that,

Electric field strength, E=2.55\times 10^{4}\ N/C

We know that,

Charge of electron, q=1.6\times 10^{-19}\ C

Mass of electron, m=9.1\times 10^{-31}\ kg

From the definition of electric field, F=qE...............(1)

According to Newton's second law, F = ma..........(2)

From equation (1) and (2)

ma=qE

a=\dfrac{qE}{m}

a=\dfrac{1.6\times 10^{-19}\ C\times 2.55\times 10^{4}\ N/C }{9.1\times 10^{-31}\ kg}

a=0.4483\times 10^{16}\ m/s^2

or

a=4.483\times 10^{15}\ m/s^2

So, the horizontal component of acceleration of an electron is 4.483\times 10^{15}\ m/s^2.

Hence, it is the required solution.

7 0
3 years ago
Two identical objects, A and B, are sitting on a table. If the net force on object A is 5 N and the net force on object B is 10
sveta [45]

If the net force on object A is 5 N and the net force on object B is 10 N, then object B will accelerate more quickly than object A provided the mass of both objects are same.

Answer: Option C

<u>Explanation: </u>

According to Newton’s second law of motion, any external force applied on an object is directly proportional to the mass and acceleration of the object. In order to state this law in terms of acceleration, it is stated that acceleration exhibited by any object is directly proportional to the net force applied on the object and inversely proportional to the mass of the object as shown below:

                      \text {Acceleration of the object } \propto \frac{\text {Net force on the object}}{\text {Mass of the object}}

So if two objects A and B are identical which means they have same mass, then the acceleration attained by the object will be directly proportionate to the net forces exerted on the objects only.

Thus if the force applied is more for one object, then the object will be exhibiting more acceleration compared to the other one. So as object B is experiencing a net force of 10 N which is greater than the net force experiences by object A, then the object B will be accelerating more quickly compared to the object A's acceleration.

7 0
3 years ago
Other questions:
  • You know that there are 1609 meters in a mile. The number of feet in a mile is 5280. How many centimeters equals one inch
    8·1 answer
  • What is an example of chemical potential energy in humans?
    15·1 answer
  • Which two options are examples of waves reflecting?
    6·1 answer
  • What is the philosopher’s stone
    15·1 answer
  • Which structure has functions in both the respiratory system and the digestive system?
    13·2 answers
  • Which statement accurately describes the relationship between weight and
    15·1 answer
  • Why dose the moon appear to move frome the east to the west in the night sky?
    5·1 answer
  • What is the final temperature if it requires 5000 J of heat to warm 2.38892 x10-2 kg of water that starts at 5oC? Remember Cp fo
    7·1 answer
  • Which of the following best describes our
    8·2 answers
  • An EM wave has a wave length of 956 m, What type of electromagnetic waves is this wave
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!